Amaç: Dünya Sağlık Örgütü tarafından pandemi olarak ilan edilen, 15 Mayıs 2021 tarihi itibarıyla dünyada yaklaşık 3 milyon ölen; 160 milyon doğrulanan; Türkiye'de ise yaklaşık 45.000 ölen; 5 milyon doğrulanan vakası bulunan koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID-19)] salgını, artçı dalgalar şeklinde devam etmektedir. Amaç, bu salgınları erken uyarı sistemleri kullanarak zamanında tespit edebilmek; ilgili sonuçları 'Covid19Takip' adlı arayüz ile anlaşılır şekilde sunmaktır. Gereç ve Yöntemler: Açık kaynaklı R yazılımı ve 'Duyarlı-Enfekteİyileşmiş' modeli kullanılmış, değişik senaryolar için 'enfekte kişi sayısı'nı içeren zaman serileri simüle edilmiştir. Sonrasında: (1) Johns Hopkins Üniversitesi resmî web sitesinde gerçek zamanlı derlenen Türkiye verilerine; (2) elde edilen sentetik verilere, istatistiksel erken uyarı sistemlerinden Erken Sapma Raporlama Sistemi [Early Aberration Reporting System (EARS)] C2 algoritması uygulanmıştır. Erken uyarı ve takip sisteminin sonuçları Covid19Takip arayüzüne entegre edilmiştir. Bulgular: EARS C2 yöntemi, hem sentetik verilerde hem de gerçek verilerde, salgının artış göstermeye başladığı günlerde, zamanında alarm üreterek erken uyarı vermiş, kısıtlamalar geldikten sonraki dönemlerde alarm üretmeyi kesmiştir. Sonuç: Erken uyarı ve takip sistemi ile Türkiye'deki COVID-19 salgınının şimdiye kadar ki durumu ve gelecekteki olası dalgalarına ait uygulamalar yapılmıştır. Arayüzle gerçek zamanlı sunulan sonuçlar, salgına ilişkin erken tedbirler almak konusunda sağlık otoritelerine ve topluma destek olacak niteliktedir.
Anahtar Kelimeler: COVID-19; koronavirüs; pandemik; erken uyarı sistemleri; Early Aberration Reporting System
Objective: Declared as a pandemic by the World Health Organization, as of May 15; around 3 million people, out of 5 million confirmed cases out of the world have died because of coronavirus disease-2019 (COVID-19). In Turkey around 45,000 people have died out of 5 million confirmed cases. In this study, we aim to detect the next possible waves of pandemic using early detection systems and share the results in the 'Covid19Takip' interface. Material and Methods: We simulated 'number of infected people' time series for different scenarios using the open-source software R and Susceptible-InfectedRecovered model. We then apply a statistical early detection system using Early Aberration Reporting System (EARS) C2 algorithm, for (1) simulated data and (2) Turkey data, which is acquired from the website of the Johns Hopkins University in real time. The outputs of the early detection and surveillance system is shared through 'Covid19Takip' interface. Results: EARS C2 could successfully detect the waves on time; and stopped giving signals after new restrictions were taken. Conclusion: An early detection and surveillance algorithm is applied to previous Turkish case counts and possible future waves of pandemic. The early detection and surveillance results which are shared through the interface will be beneficial to health authorities and the society in taking early precautions regarding the epidemic.
Keywords: COVID-19; coronavirus; pandemic; early detection systems; Early Aberration Reporting System
- Taşdelen B, Derici Yıldırım D. Türkiye'de COVID-19 vaka sayılarının Poisson regresyon ile tahmini ve alınan önlemlerin insidans hızı tahminlerine etkisi [Predicting COVID-19 cases in Turkey with Poisson regression and the effect of preventions on ıncidence rate ratio estimation]. Turkiye Klin J Biostat. 2020;12(3):293-302. [Crossref]
- Karasoy O, Eren Doğu ZF. COVID-19takip: Türkiye'de COVID-19 salgınının gerçek zamanlı izlenmesi için web arayüzü [COVID-19takip: A real time web interface for tracking COVID-19 outbreak in Turkey]. Turkiye Klin J Biostat. 2020;12(1):97-106. [Crossref]
- Miller MA, Viboud C, Balinska M, Simonsen L. The signature features of influenza pandemics-implications for policy. N Engl J Med. 2009;360(25):2595-8. Erratum in: N Engl J Med. 2012;366(8):771. [Crossref] [PubMed]
- Cobos AJ, Nelson CG, Jehn M, Viboud C, Chowell G. Mortality and transmissibility patterns of the 1957 influenza pandemic in Maricopa County, Arizona. BMC Infect Dis. 2016;16(1):405. [Crossref] [PubMed] [PMC]
- Truelove SA, Chitnis AS, Heffernan RT, Karon AE, Haupt TE, Davis JP. Comparison of patients hospitalized with pandemic 2009 influenza A (H1N1) virus infection during the first two pandemic waves in Wisconsin. J Infect Dis. 2011;203(6):828-37. [Crossref] [PubMed] [PMC]
- Mummert A, Weiss H, Long LP, Amigó JM, Wan XF. A perspective on multiple waves of influenza pandemics. PLoS One. 2013;8(4):e60343. [Crossref] [PubMed] [PMC]
- Cowling BJ, Park M, Fang VJ, Wu P, Leung GM, Wu JT. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Euro Surveill. 2015;20(25):7-13. Erratum in: Euro Surveill. 2015;20(26). pii: 21175. [Crossref] [PubMed] [PMC]
- He D, Chiu AP, Lin Q, Cowling BJ. Differences in the seasonality of Middle East respiratory syndrome coronavirus and influenza in the Middle East. Int J Infect Dis. 2015;40:15-6. [Crossref] [PubMed] [PMC]
- Olson DR, Simonsen L, Edelson PJ, Morse SS. Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc Natl Acad Sci U S A. 2005;102(31):11059-63. [Crossref] [PubMed] [PMC]
- National Geographic [İnternet]. Copyright © 1996-2015 National Geographic Society. How some cities 'flattened the curve' during the 1918 flu pandemic. Erişim tarihi: 10.05.2021 Erişim linki: [Link]
- Biskup E, Prewitt E. Looking to the future to prepare for Covid-19's second wave. NEJM Catal Innov Care Deliv. 2020;1(3). [Crossref] [PMC]
- Köse SK, Demir E, Gülçin A. Estimation of the time dependent reproduction number of novel coronavirus (COVID 19) for Turkey in the late stage of the outbreak. Turkiye Klin J Biostat. 2021;13(1):103-11. [Crossref]
- Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet. 2020;395(10225):689-97. [Crossref] [PubMed] [PMC]
- Kim W, Han SK, Oh KJ, Kim TY, Ahn H, Song C. The dual analytic hierarchy process to prioritize emerging technologies. Technol Forecast Soc Change. 2010;77(4):566-77. [Crossref]
- Karasoy O, Eren-Doğu ZF. Covid19Takip. 2020. [Erişim tarihi: 5 Mayıs 2021]. Erişim tarihi: 10.05.2021 Erişim linki: [Link]
- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533-4. Erratum in: Lancet Infect Dis. 2020;20(9):e215. [Crossref] [PubMed] [PMC]
- Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc london Ser A, Contain Pap a Math Phys Character. 1927;115(772):700-21. [Crossref]
- Anderson RM, May RM. Population biology of infectious diseases: Part I. Nature. 1979;280(5721):361-7. [Crossref] [PubMed]
- May RM, Anderson RM. Population biology of infectious diseases: Part II. Nature. 1979;280(5722):455-61. [Crossref] [PubMed]
- Çetin E, Kiremitci B, Yurt İD. Matematiksel epidemiyoloji: Pandemik A/H1N1 Gribi vakası [Mathematical epidemiology: Pandemic A/H1N1 case]. Istanbul Univ J Sch Bus Adm. 2009;38(2):197-209. [Link]
- Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. 1st ed. USA: Princeton University Press; 2011. [Crossref]
- Dye C, Gay N. Epidemiology. Modeling the SARS epidemic. Science. 2003;300(5627):1884-5. [Crossref] [PubMed]
- Koopman JS, Lynch JW. Individual causal models and population system models in epidemiology. Am J Public Health. 1999;89(8):1170-4. [Crossref] [PubMed] [PMC]
- Noufaily A, Morbey RA, Colón-González FJ, Elliot AJ, Smith GE, Lake IR, et al. Comparison of statistical algorithms for daily syndromic surveillance aberration detection. Bioinformatics. 2019;35(17):3110-8. [Crossref] [PubMed] [PMC]
- Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: A review. J R Stat Soc Ser A (Statistics Soc. 2012;175(1):49-82. [Crossref]
- Chu A, Savage R, Whelan M, Rosella LC, Crowcroft NS, Willison D, et al. Assessing the relative timeliness of Ontario's syndromic surveillance systems for early detection of the 2009 influenza H1N1 pandemic waves. Can J Public Health. 2013;104(4):340-7. [Crossref] [PubMed] [PMC]
- Collier N. What's unusual in online disease outbreak news? J Biomed Semantics. 2010;1(1):2. [Crossref] [PubMed] [PMC]
- Centers for Disease Control and Prevention (CDC). Syndromic surveillance for bioterrorism following the attacks on the World Trade Center-New York City, 2001. MMWR Morb Mortal Wkly Rep. 2002;51 Spec No:13-5. [PubMed]
- Hafen RP, Anderson DE, Cleveland WS, Maciejewski R, Ebert DS, Abusalah A, et al. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts. BMC Med Inform Decis Mak. 2009;9:21. [Crossref] [PubMed] [PMC]
- Höhle M. Surveillance: An R package for the monitoring of infectious diseases. Comput Stat. 2007;22(4):571-82. [Crossref]
- Rigdon SE, Fricker Jr RD. Monitoring the Health of Populations by Tracking Disease Outbreaks: Saving Humanity from the Next Plague. 1st ed. Boca Raton: CRC Press; 2020. [Crossref]
- Soetaert KER, Petzoldt T, Setzer RW. Solving differential equations in R: package deSolve. J Stat Softw. 2010;33(9). [Crossref]
- Anadolu Ajansı [İnternet]. [Erişim tarihi: 5 Mayıs 2021]. Türkiye'nin 1 yıllık Kovid-19'la mücadele sürecinin "tedbir karnesi." 2021. Erişim linki: [Link]
- Kudryashov NA, Chmykhov MA, Vigdorowitsch M. Analytical features of the SIR model and their applications to COVID-19. Appl Math Model. 2021;90:466-73. [Crossref] [PubMed] [PMC]
- Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS One. 2020;15(3):e0230405. [Crossref] [PubMed] [PMC]
.: Process List