Amaç: Çalışmanın amacı, azı dişlerinde oblik sırt korunarak açılan endodontik giriş kavitesinin ve akışkan kompozit kullanımının kırılma dayanımına etkisinin araştırılmasıdır. Gereç ve Yöntemler: Yüz on üst 1. büyük azı dişi 5 gruba ayrıldı. Grup 1 oblik sırtın korunduğu ve kaide olarak akışkan kompozitin (Filtek Supreme XT Flow; 3M ESPE, St. Paul, MN, ABD) uygulandığı dişler. Grup 2 oblik sırtın korunduğu ve akışkan kompozitin uygulanmadığı dişler. Grup 3 oblik sırtın kaldırıldığı ve akışkan kompozitin uygulandığı dişler. Grup 4 oblik sırtın kaldırıldığı ve akışkan kompozitin uygulanmadığı dişler. Grup 5 prepare edilmemiş dişler. Tüm dişlerin restorasyonları üniversal bir kompozit rezin ile tamamlandı. Maksimum kırılma dayanımları tek yönlü ANOVA ve Bonferroni testleri kullanılarak analiz edildi. Sonlu elemanlar stres analizi (SESA) için bilgisayar ortamında modeller oluşturuldu. Bulgular: En yüksek kırılma dayanımı hiçbir işlem uygulanmayan sağlam diş grubundadır (Grup 5). Grup 5, 1 ve 3 arasında istatistiksel fark bulunamamıştır (p>0,05). Akışkan kompozitin kullanılmadığı grupların kırılma dayanımı (grup 2 ve grup 4) akışkan kompozitin kullanıldığı gruplara (grup 1 ve grup 3) göre istatistiksel olarak anlamlı düşük bulunmuştur (p<0,001). SESA'da, grup 4 hariç grupların benzer stres dağılımı gösterdiği gözlendi. Grup 4'te stresin furkasyon bölgesine doğru yayılım gösterdiği gözlendi. Sonuç: Akışkan kompozit kullanımı ve oblik sırtın korunması dişlerin dayanımını artırmaktadır.
Anahtar Kelimeler: Kavite kaplayıcıları; kavite preparasyonları; kırılma dayanımı
Objective: The aim of this study was to eveluate the effect of endodontic access cavity preparations by preventing oblique ridge and application of flowable composite on fracture strength in molar teeth. Material and Methods: 110 maxillary first molars were divided into five groups. Teeth in which Group 1 oblique ridge is protected and flowable composite (Filtek Supreme XT Flow; 3M ESPE, St. Paul, MN, USA) is applied as liner. Teeth in which Group 2 oblique ridge is protected and flowable composite is not applied. Teeth in which group 3 oblique ridge is protected and flowable composite is applied. Teeth in which Group 4 oblique ridge is protected and flowable composite is not applied. Group 5 were unprepared teeth. The restoration was then completed with a universal composite resin. The samples were tested using a universal testing machine. Peak loads analyzed using one-way ANOVA and Bonferroni tests. Finite element analyses (FEA) models were created in a computer. Results: The highest fracture strength is in the intact tooth group (Group 5). There was no statistical difference between groups 5, 1 and 3 (p>0.05). The fracture strength of the groups which no flowable composite was used (group 2 and group 4) was found significantly lower than the groups which the flowable composite (group 1 and group 3) was used (p<0.001). In FEA, it was observed that the groups showed similar stress distribution except in Group 4. In group 4 the stress spread towards the furcation region. Conclusion: The application of flowable composites and protection of the oblique ridge increases the fracture strength.
Keywords: Cavity liners; cavity preparations; fracture strength
- Khers SC, Carpenter CW, Vetter JD, Staley RN. Anatomy of cusps of posterior teeth and their fracture potential. J Prosthet Dent. 1990;64(2):139-47. [Crossref] [PubMed]
- Eakle WS. Fracture resistance of teeth restored with class II bonded composite resin. J Dent Res. 1986;65(2):149-53. [Crossref] [PubMed]
- Sengun A, Cobankara FK, Orucoglu H. Effect of a new restoration technique on fracture resistance of endodontically treated teeth. Dent Traumatol. 2008;24(2):214-9. [Crossref] [PubMed]
- Sorensen JA, Martinoff JT. Intracoronal reinforcement and coronal coverage: a study of endodontically treated teeth. J Prosthet Dent. 1984;51(6):780-4. [Crossref] [PubMed]
- Reeh ES, Douglas WH, Messer HH. Stiffness of endodontically-treated teeth related to restoration technique. J Dent Res. 1989;68(11):1540-4. [Crossref] [PubMed]
- Assif D, Gorfil C. Biomechanical considerations in restoring endodontically treated teeth. J Prosthet Dent. 1994;71(6):565-7. [Crossref] [PubMed]
- Sabeti M, Kazem M, Dianat O, Bahrololumi N, Beglou A, Rahimipour K, et al. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation. J Endod. 2018;44(9):1402-6. [Crossref] [PubMed]
- Panitvisai P, Messer HH. Cuspal deflection in molars in relation to endodontic and restorative procedures. J Endod. 1995;21(2):57-61. [Crossref] [PubMed]
- Deutsch AS, Musikant BL, Cavallari J, Silverstein L, Lepley J, Ohlen K, et al. Root fracture during insertion of prefabricated posts related to root size. J Prosthet Dent. 1985;53(6):786-9. [Crossref] [PubMed]
- Hernandez R, Bader S, Boston D, Trope M. Resistance to fracture of endodontically treated premolars restored with new generation dentine bonding systems. Int Endod J. 1994;27(6):281-4. [Crossref] [PubMed]
- Potashnick SR, Weine FS, Strauss S. Potashnick SR, Weine FS, Strauss S. Restoration of the endodontically treated tooth. Endodontic Therapy 4th ed. Mosby Inc, St Louis, USA, 1989. p. 653-98.
- Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc. 1998;129(5):567-77. [Crossref] [PubMed]
- Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations--a 3D finite element analysis. Dent Mater. 2002;18(4):295-303. [Crossref] [PubMed]
- Leinfelder KF. Changing restorative traditions: the use of bases and liners. J Am Dent Assoc. 1994;125(1):65-7. [Crossref] [PubMed]
- Cheng CW, Chen WP, Chien YT, Teng YT, Lu PY, Huang SH, et al. Biomechanical behavior of cavity design on teeth restored using ceramic inlays: An approach based on three-dimensional finite element analysis and ultrahigh-speed camera. Acta Biomater. 2019;89:382-90. [Crossref] [PubMed]
- Nelson SJ, M Ash M. Wheeler's Dental Anatomy, Physiology, and Occlusion. Nelson SJ, editor. The Permanent Maxillary Molars. 9th ed. St. Louis, Mo: Saunders/Elsevier; 2010. p.171-80. [Link]
- Magne P. Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent. 2010;103(6):343-51. [Crossref] [PubMed]
- Bader JD, Martin JA, Shugars DA. Incidence rates for complete cusp fracture. Community Dent Oral Epidemiol. 2001;29(5):346-53. [Crossref] [PubMed]
- Corsentino G, Pedullà E, Castelli L, Liguori M, Spicciarelli V, Martignoni M, et al. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth. J Endod. 2018;44(9):1416-21. [Crossref] [PubMed]
- Assif D, Nissan J, Gafni Y, Gordon M. Assessment of the resistance to fracture of endodontically treated molars restored with amalgam. J Prosthet Dent. 2003;89(5):462-5. [Crossref] [PubMed]
- Linn J, Messer HH. Effect of restorative procedures on the strength of endodontically treated molars. J Endod. 1994;20(10):479-85. [Crossref] [PubMed]
- Steele A, Johnson BR. In vitro fracture strength of endodontically treated premolars. J Endod. 1999;25(1):6-8. [Crossref] [PubMed]
- Bassir MM, Labibzadeh A, Mollaverdi F. The effect of amount of lost tooth structure and restorative technique on fracture resistance of endodontically treated premolars. J Conserv Dent. 2013;16(5):413-7. [Crossref] [PubMed] [PMC]
- Nam SH, Chang HS, Min KS, Lee Y, Cho HW, Bae JM. Effect of the number of residual walls on fracture resistances, failure patterns, and photoelasticity of simulated premolars restored with or without fiber-reinforced composite posts. J Endod. 2010;36(2):297-301. [Crossref] [PubMed]
- Dammaschke T, Nykiel K, Sagheri D, Schäfer E. Influence of coronal restorations on the fracture resistance of root canal-treated premolar and molar teeth: a retrospective study. Aust Endod J. 2013;39(2):48-56. [Crossref] [PubMed]
- Soares PV, Santos-Filho PCF, Queiroz EC, Araújo TC, Campos RE, Araújo CA, et al. Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J Prosthodont. 2008;17(2):114-9. [Crossref] [PubMed]
- Kuijs RH, Fennis WM, Kreulen CM, Roeters JJ, Burgersdijk RC. Fracture strength of cusp replacing resin composite restorations. Am J Dent. 2003;16(1):13-6. [PubMed]
- Akbarian G, Ameri H, Chasteen JE, Ghavamnasiri M. Fracture resistance of premolar teeth restored with silorane-based or dimethacrylate-based composite resins. J Esthet Restor Dent. 2014;26(3):200-7. [Crossref] [PubMed]
- Gömeç Y, Dörter C, Dabanoglu A, Koray F. Effect of resin-based material combination on the compressive and the flexural strength. J Oral Rehabil. 2005;32(2):122-7. [Crossref] [PubMed]
- Chuang SF, Liu JK, Chao CC, Liao FP, Chen YH. Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent. 2001;85(2):177-83. [Crossref] [PubMed]
- Yamamoto T, Takeishi S, Momoi Y. Finite element stress analysis of indirect restorations prepared in cavity bases. Dent Mater J. 2007;26(2):274-9. [Crossref] [PubMed]
- Lin CL, Chang YH, Liu PR. Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: A finite element study. J Dent. 2008;36(3):194-203. [Crossref] [PubMed]
.: Process List