Objective: Hypoxic preconditioning allows cells to gain resistance to hypoxic damage. There are a limited number of studies suggesting that hypoxic preconditioning increases antioxidant capacity in the lung. In this study, we aimed to evaluate effects of hypoxic preconditioning on oxidant/ antioxidant systems in rat lung. Material and Methods: Rats were divided into 4 groups: control, preconditioning (PC) (10% O2), severe hypoxia (SH) (7% O2) and PC + SH. The parameters related to oxidative stress and antioxidant defense mechanisms, which are malondialdehyde (MDA) levels, total oxidant system (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), superoxide dismutase (SOD) and glutathione (GSH) activity, were measured. Results were evaluated using the One-Way ANOVA and t-test; p<0.05 was considered significant. Results: Compared with the control group, MDA levels decreased in all hypoxic groups; decrements in PC and SH groups were statistically significant. Compared with the control group, levels of TOS showed a significant increase in the PC+SH group. OSI of PC+SH group was significantly higher than other groups. There was no significant difference in TAC levels between the groups. Compared to other groups, SOD activity showed a significant decrease in the PC+SH group. GSH levels showed a significant decrease in PC+SH group compared to both control and PC group. Conclusion: Our findings suggest that hypoxic preconditioning does not have an effect on antioxidant defense systems in lungs, but severe hypoxia does affect oxidant/antioxidant systems.
Keywords: Hypoxia; hypoxic preconditioning; lung; reactive oxygen species; oxidant/antioxidant systems
Amaç:Hipoksik önkoşullama, hücrelerin hipoksik hasara karşı direnç kazanmasını sağlar. Hipoksik önkoşullamanın akciğerdeki antioksidan kapasiteyi arttırdığı yönündeki çalışmalar sınırlı sayıdadır. Bu çalışmada sıçan akciğerinde hipoksik ön koşullamanın oksidan/antioksidan sistemler üzerindeki etkilerinin değerlendirilmesi amaçlanmıştır. Gereç ve Yöntemler: Sıçanlar; kontrol (K), ön koşullama (ÖK) (%10 O2), ağır hipoksi (AH) (%7 O2) ve ağır hipoksi+ön koşullama (AH+ÖK) olmak üzere 4 gruba ayrılmıştır. Dokularda oksidatif stres ve antioksidan savunma mekanizmaları ile ilişkili parametreler olan malondialdehit (MDA) düzeyi, total oksidan sistem (TOS), total antioksidan kapasite (TAK), oksidatif stres indeksi (OSİ), süperoksit dismutaz (SOD) and glutatyon (GSH) aktiviteleri ölçülmüştür. Sonuçlar Tek Yönlü ANOVA ve t testi kullanılarak değerlendirildi; p<0,05 değerleri anlamlı kabul edildi. Bulgular: Kontrol grubu ile karşılaştırıldığında, MDA seviyeleri tüm hipoksik gruplarda azalma göstermiştir; ÖK ve AH gruplarındaki bu azalma istatistiksel olarak anlamlıdır. Kontrol grubu ile karşılaştırıldığında, TOS düzeyleri AH+ÖK grubunda belirgin bir artış göstermiştir. AH+ÖK grubunun OSİ değerleri diğer gruplara göre anlamlı düzeyde yükselmiştir. Gruplar arasında TAK düzeyleri bakımından anlamlı bir fark bulunamamıştır. Diğer gruplara kıyasla, SOD etkinliği ağır hipoksi+ön koşullama grubunda önemli bir azalma göstermiştir. Kontrol ve ÖK grubuyla kıyaslandığında GSH düzeyi AH+ÖK grubunda anlamlı bir azalma göstermiştir. Sonuç: Bulgularımız hipoksik ön koşullamanın akciğerlerde antioksidan savunma sistemlerin üzerinde etkili olmadığını ancak ağır hipoksinin oksidan/antioksidan sistemleri etkilediğini göstermektedir.
Anahtar Kelimeler: Hipoksi; hipoksik ön koşullama; akciğer; reaktif oksijen türleri; oksidan/antioksidan sistemler
- Abbruscato TJ, Davis TP. Combination of hypoxia/aglycemia compromises in vitro bloodbrain barrier integrity. J Pharmacol Exp Ther. 1999;289(2):668-75.
- Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, et al. delta-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci. 2009;66(21):3505-16. [Crossref] [PubMed] [PMC]
- Maxwell SR. Prospects for the use of antioxidant therapies. Drugs. 1995;49(3):345-61. [Crossref] [PubMed]
- Shukla D, Saxena S, Jayamurthy P, Sairam M, Singh M, Jain SK, et al. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs. High Alt Med Biol. 2009;10(1):57-69.[Crossref] [PubMed]
- Nakanishi K, Tajima F, Nakamura A, Yagura S, Ookawara T, Yamashita H, et al. Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol. 1995;489(Pt 3):869-76. [Crossref] [PubMed] [PMC]
- Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK. Neuroprotective effect of N-acetyl cysteine on hypoxiainduced oxidative stress in primary hippocampal culture. Brain Res. 2005;1046(12):97-104. [Crossref] [PubMed]
- Mohanraj P, Merola AJ, Wright VP, Clanton TL. Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol (1985). 1998;84(6):1960-6.[Crossref] [PubMed]
- Kehrer JP, Lund LG. Cellular reducing equivalents and oxidative stress. Free Radic Biol Med. 1994;17(1):65-75. [Crossref]
- Maiti P, Singh SB, Sharma AK, Muthuraju S, Banerjee PK, Ilavazhagan G. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int. 2006;49(8):709-16. [Crossref] [PubMed]
- Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem. 2005;93(1):47-52. [Crossref] [PubMed]
- Hornbein TF, Severinghaus JW. Carotid chemoreceptor response to hypoxia and acidosis in cats living at high altitude. J Appl Physiol. 1969;27(6):837-9. [Crossref] [PubMed]
- Hochachka PW, Rupert JL, Monge C. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A Mol Integr Physiol. 1999;124(1):1-17. [Crossref]
- Yang CC, Lin LC, Wu MS, Chien CT, Lai MK. Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Transplantation. 2009;88(11): 1251-60. [Crossref] [PubMed]
- An P, Xue YX. Effects of preconditioning on tight junction and cell adhesion of cerebral endothelial cells. Brain Res. 2009;1272:81-8. [Crossref] [PubMed]
- Zhang SX, Miller JJ, Gozal D, Wang Y. Wholebody hypoxic preconditioning protects mice against acute hypoxia by improving lung function. J Appl Physiol (1985). 2004;96(1):392-7.[Crossref] [PubMed]
- Zhang J, Qian H, Zhao P, Hong SS, Xia Y. Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke. 2006;37(4): 1094-9. [Crossref] [PubMed]
- Bin-Jaliah I, Ammar HI, Mikhailidis DP, Dallak MA, Al-Hashem FH, Haidara MA, et al. Cardiac adaptive responses after hypoxia in an experimental model. Angiology. 2010;61(2): 145-56. [Crossref] [PubMed]
- Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, et al. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res. 1997;81(3):404-14. [Crossref] [PubMed]
- Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, et al. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res. 1999;85(6):542-50. [Crossref] [PubMed]
- Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A. 2001;98(16):9050-5. [Crossref] [PubMed] [PMC]
- Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84(9):1095-109. [Crossref] [PubMed]
- Wang Y, Guo Y, Zhang SX, Wu WJ, Wang J, Bao W, et al. Ischemic preconditioning upregulates inducible nitric oxide synthase in cardiac myocyte. J Mol Cell Cardiol. 2002;34(1):5-15. [Crossref] [PubMed]
- Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, et al. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci U S A. 2000;97(18):10197-202. [Crossref] [PubMed] [PMC]
- Wang Y, Kodani E, Wang J, Zhang SX, Takano H, Tang XL, et al. Cardioprotection during the final stage of the late phase of ischemic preconditioning is mediated by neuronal NO synthase in concert with cyclooxygenase-2. Circ Res. 2004;95(1):84-91. [Crossref] [PubMed]
- Bärtsch P, Mairbäurl H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol (1985). 2005;98(3):1101-10. [Crossref] [PubMed]
- Sartori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learning from highaltitude pulmonary edema. Respir Physiol Neurobiol. 2007;159(3):338-49. [Crossref] [PubMed]
- Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006;174(10):1132-8. [Crossref] [PubMed]
- West JB, Colice GL, Lee YJ, Namba Y, Kurdak SS, Fu Z, et al. Pathogenesis of high-altitude pulmonary oedema: direct evidence of stress failure of pulmonary capillaries. Eur Respir J. 1995;8(4):523-9.
- Güney S, Schuler A, Ott A, Höschele S, Zü g S, Baloglu E, et al. Dexamethasone prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and expression of Na+-K+-ATPase and epithelial Na+ channels. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1332-8. [Crossref] [PubMed]
- Zhang SX, Miller JJ, Stolz DB, Serpero LD, Zhao W, Gozal D, et al. Type I epithelial cells are the main target of whole-body hypoxic preconditioning in the lung. Am J Respir Cell Mol Biol. 2009;40(3):332-9. [Crossref] [PubMed] [PMC]
- Casini AF, Ferrali M, Pompella A, Maellaro E, Comporti M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am J Pathol. 1986;123(3):520-31.
- Aykaç G, Uysal M, Yalçin AS, Koçak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology. 1985;36(1):71-6. [Crossref]
- Demir N, Ece İ, Peker E, Kaba S, Ustyol L, Balahoroğlu R, et al. Impact of patent ductus arteriosus and subsequent therapy with ibuprofen on the release of S-100B and oxidative stres index in preterm infants. Med Sci Monit. 2014;20:2799-805. [Crossref] [PubMed] [PMC]
- Turkdogan KA, Akpinar O, Karabacak M, Akpinar H, Turkdogan FT, Karahan O. Association between oxidative stress index and serum lipid levels in healthy young adults. J Pak Med Assoc. 2014;64(4):379-81.
- Yilmaz S, Ozgu-Erdinc AS, Demirtas C, Ozturk G, Erkaya S, Uygur D. The oxidative stress index increases among patients with hyperemesis gravidarum but not in normal pregnancies. Redox Rep. 2015;20(3):97-102.[Crossref] [PubMed]
- Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gardette B, et al. Operation Everest III (Comex'97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation. 2001;49(3):307-14. [Crossref]
- Ji LL. Antioxidant signaling in skeletal muscle: a brief review. Exp Gerontol. 2007;42(7):582-93. [Crossref] [PubMed]
- Zhou LZ, Johnson AP, Rando TA. NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med. 2001;31(11):1405-16. [Crossref]
- Mogil'nitskaia LV, Prokof'ev VN, An F, Zhogolev VV. [The effect of hypoxia on membrane status and lipid peroxidation in rat lungs and blood]. Vopr Med Khim. 1993;39(6):34-6.
- Park HK, Seol IJ, Kim KS. Protective effect of hypoxic preconditioning on hypoxic-ischemic injured newborn rats. J Korean Med Sci. 2011;26(11):1495-500. [Crossref] [PubMed] [PMC]
- Berger MM, Huhn R, Oei GT, Heinen A, Winzer A, Bauer I, et al. Hypoxia induces late preconditioning in the rat heart in vivo. Anesthesiology. 2010;113(6):1351-60. [Crossref] [PubMed]
.: Process List