Objective: Spinal implants have been used to stimulate fusion by surgical adjustment and correct abnormal alignment of the vertebral column. Spinal fusion can cause some spinal disorders and hence describing the changes in biomechanical forces would help to understand these complications. In this study, we used two lumbar models. One of them is used without the fixed pedicle screw system, and the other one was used with that system. Therefore, we aimed to investigate the biomechanical effect of a pedicle screw fixation system on the lumbar functional spinal unit under applied forces. Material and Methods: Computed tomography data of a scoliotic patient was used for the construction of the lumbar models. The second and third vertebrae (L2- L3) of the lumbar spine, two facet joints, an intervertebral disc, and ligaments were constructed. A screw fixation system was employed and Von-Mises stress analysis was carried out for both models. Results: The von Mises stress distribution results showed that the presence of fixed implantation transmitted the compressive forces to the screws and rods in all directions and decreased the stress levels considerably by allowing to stabilize the model. The upper side of the L2 vertebra was the most affected region in flexion and lateral bending. However, the pedicle region had the maximum affected area under applied loads in extension and axial rotation. Conclusion: It was concluded that a fixed implant system preserves the maintenance of the vertebral column and decreases the stress on the adjacent spinal segments, especially for the intervertebral discs.
Keywords: Spine; lumbar vertebrae; finite element analysis; pedicle screws
Amaç: Omurga implantları, cerrahi müdahale ile füzyonu hızlandırmaları ve omurganın anormal eğriliğini düzeltmek için kullanılmaktadır. Spinal füzyon bazı spinal bozukluklara neden olabilir ve bu nedenle füzyon ile lomber omurların komşu bölümlerine uygulanan biyomekanik kuvvetlerdeki değişiklikleri açıklamak, bu komplikasyonları anlamaya yardımcı olacaktır. Bu çalışmada iki tane lomber model kullanıldı. Bir tanesi sabit pedikül vida sistemi olmadan kullanıldı, diğeri ise bu sistem ile birlikte kullanıldı. Bu sebeple, bu çalışmada lomber fonksiyonel omurga biriminde pedikül vida sisteminin uygulanan kuvvetler altındaki biyomekanik etkisini araştırmayı amaçladık. Gereç ve Yöntemler: Skolyoz bir hastanın bilgisayarlı tomografi verileri lomber omurganın temel birimini oluşturmak için kullanılmıştır. Lomber omurganın ikinci ve üçüncü omurları (L2-L3), iki tane faset eklem, bir tane omurlar arası disk ve bağ dokuları oluşturulmuştur. Bir titanyum vida sabitleme sistemi tasarlanmış ve Von Mises gerilme analizleri intakt (implant olmayan sistemler) ve implant olan sistemler için uygulanmıştır. Bulgular: Von Mises gerilme dağılımı sonuçları, sabit implantasyonun olması durumunda baskı yapan kuvvetlerin vidalara ve çubuklara tüm yönlerde iletildiğini göstermiştir ve gerilme seviyelerini önemli ölçüde azaltarak modelin dengede durmasına olanak sağlamıştır. L2 omurunun en üst bölümünün fleksiyon ve yana eğilmede en fazla etkilenen bölge olmuştur. Ancak uygulanan yükler altındaki ekstansiyon ve aksiyal rotasyonda pedikül bölümü en çok etkilenen alan olmuştur. Sonuç: Sabit bir implant sisteminin omurganın bütünlüğünü koruduğu ve özellikle omurlar arası diskler için komşu bölümler üzerindeki gerilmeyi azalttığı sonucuna varılmıştır.
Anahtar Kelimeler: Omurga; lomber omur; sonlu eleman analizi; pedikül vidaları
- Janicki JA, Alman B. Scoliosis: Review of diagnosis and treatment. Paediatr Child Health. 2007;12(9):771-6. [Crossref] [PubMed] [PMC]
- Zheng J, Yang Y, Lou S, Zhang D, Liao S. Construction and validation of a three-dimensional finite element model of degenerative scoliosis. J Orthop Surg Res. 2015;10:189. [Crossref] [PubMed] [PMC]
- Little JP, Izatt MT, Labrom RD, Askin GN, Adam CJ. An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity. Scoliosis. 2013;8(1):9. [Crossref] [PubMed] [PMC]
- Gong Z, Chen Z, Feng Z, Cao Y, Jiang C, Jiang X. Finite element analysis of 3 posterior fixation techniques in the lumbar spine. Orthopedics. 2014;37(5):e441-8. [Crossref] [PubMed]
- Chen CS, Huang CH, Shih SL. Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System)--a finite element analysis. BMC Musculoskelet Disord. 2015;16:81. [Crossref] [PubMed] [PMC]
- Panjabi MM, White AA. Clinical Biomechanics of Spine. 2nd ed. Baltimore, MD: J.B. Lippincott Company; 1990.
- Herren C, Beckmann A, Meyer S, Pishnamaz M, Mundt M, Sobottke R, et al. Biomechanical testing of a PEEK-based dynamic instrumentation device in a lumbar spine model. Clin Biomech (Bristol, Avon). 2017;44:67-74. [Crossref] [PubMed]
- Ishihara H, Kanamori M, Kawaguchi Y, Nakamura H, Kimura T. Adjacent segment disease after anterior cervical interbody fusion. Spine J. 2004;4(6):624-8. [Crossref] [PubMed]
- Kashkoush A, Agarwal N, Paschel E, Goldschmidt E, Gerszten PC. Evaluation of a hybrid dynamic stabilization and fusion system in the lumbar spine: a 10 year experience. Cureus. 2016;8(6):e637. [Crossref] [PubMed] [PMC]
- Saavedra-Pozo FM, Deusdara RA, Benzel EC. Adjacent segment disease perspective and review of the literature. Ochsner J. 2014;14(1):78-83. [PubMed] [PMC]
- Zhou C, Cha T, Li G. An upper bound computational model for investigation of fusion effects on adjacent segment biomechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2019;22(14):1126-34. [Crossref] [PubMed]
- Fan Y, Zhou S, Xie T, Yu Z, Han X, Zhu L. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis. J Orthop Surg Res. 2019;14(1):476. [Crossref] [PubMed] [PMC]
- Lu T, Lu Y. Interlaminar stabilization offers greater biomechanical advantage compared to interspinous stabilization after lumbar decompression: a finite element analysis. J Orthop Surg Res. 2020;15(1):291. [Crossref] [PubMed] [PMC]
- Song M, Sun K, Li Z, Zong J, Tian X, Ma K, et al. Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test. Sci Rep. 2021;11(1):12968. [Crossref] [PubMed] [PMC]
- Iorio JA, Jakoi AM, Singla A. Biomechanics of degenerative spinal disorders. Asian Spine J. 2016;10(2):377-84. [Crossref] [PubMed] [PMC]
- Salsabili N, Santiago López J, Prieto Barrio MI. Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling. Australas Phys Eng Sci Med. 2019;42(3):689-700. [Crossref] [PubMed]
- Tyndyka MA, Barron V, McHugh PE, O'Mahoney D. Generation of a finite element model of the thoracolumbar spine. Acta Bioeng Biomech. 2007;9(1):35-46. [PubMed]
- Coogan JS, Francis WL, Eliason TD, Bredbenner TL, Stemper BD, Yoganandan N, et al. Finite element study of a lumbar intervertebral disc nucleus replacement device. Front Bioeng Biotechnol. 2016;4:93. [Crossref] [PubMed] [PMC]
- Khademi M, Mohammadi Y, Gholampour S, Fatouraee N. The nucleus pulpous of intervertebral disc effect on finite element modeling of spine. International Clinical Neuroscience Journal. 2016;3(3):150-7. [Link]
- Maquer G. Meshing of intervertebral discs and cement in smooth models of vertebrae. Vienna University of Technology. 2011:1-42. [Link]
- Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985;18(3):167-76. [Crossref] [PubMed]
- Putzer M, Auer S, Malpica W, Suess F, Dendorfer S. A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord. 2016;17:95. [Crossref] [PubMed] [PMC]
- Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992;25(11):1351-6. [Crossref] [PubMed]
- Liu C, Kamara A, Yan Y. Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw. BMC Musculoskelet Disord. 2018;19(1):231. [Crossref] [PubMed] [PMC]
- Lo CC, Tsai KJ, Chen SH, Zhong ZC, Hung C. Biomechanical effect after Coflex and Coflex rivet implantation for segmental instability at surgical and adjacent segments: a finite element analysis. Comput Methods Biomech Biomed Engin. 2011;14(11):969-78. [Crossref] [PubMed]
.: Process List