Amaç: Nonproliferatif diyabetik retinopatisi (NPDRP) olan hastalarda optik koherens tomografi anjiyografinin (OKTA) flow değerlendirme aracı kullanılarak koryokapillaris flow alanlarını değerlendirmek ve sağlıklı bireyler ile karşılaştırmaktır. Gereç ve Yöntemler: Bu retrospektif araştırma kapsamında, kliniğimiz retina biriminde Diyabetik Retinopati Erken Tedavi Çalışması'na göre çok hafif, hafif ve orta NPDRP nedeni ile izlem altında olan hastalar ve genel polikliniğe rutin göz muayenesi için başvuranlar değerlendirildi. Hastaların en iyi düzeltilmiş görme keskinlikleri, ön ve arka segment muayeneleri, göz içi basınçları, aksiyel uzunlukları, merkezi kornea kalınlıkları ve refraktif hata ölçümleri kaydedildi. Aynı zamanda, spektral domain optik koherens tomografi (SD-OKT), fluoresein anjiyografi ve OKTA görüntülemeleri yapıldı. Tüm OKTA görüntülemeleri RTVue XR Avanti cihazının AngioVue yazılımı kullanılarak (Opto-Vue, Inc., Fremont, CA, Versiyon 2017.1.0.151) ve 6×6 görüntüler alarak gerçekleştirildi. Cihazın flow değerlendirme aracı ile merkezi foveal avasküler zon olan 1 mm, 2 mm ve 3 mm yarıçaplı sabit daireler içinde kalan bölgelerde koryokapillarisin flow alanı hesaplandı. Bulgular: Otuz (21 kadın, 9 erkek) bireyin 30 gözü çalışma grubu, 30 (20 kadın, 10 erkek) sağlıklı olgunun 30 gözü kontrol grubu olarak incelendi. Çalışma ve kontrol grubunun yaş ortalaması sırasıyla 58,82±3,50 ve 57,65±5,84 yıl olarak bulundu. OKTA ölçümlerinde NPDRP'si olan grubun her üç yarıçaplı alan içindeki koryokapillaris flow alanları kontrol grubuna göre istatistiksel anlamlı olarak daha düşük bulunmuştur. (sırasıyla p=0,004, p=0,004 ve p=0,008). Sonuç: Sonuç olarak bu çalışma, görüntüleme metodu olarak OKTA kullanılarak gerçekleştirilmiş ve NPDRP'si olan hastalarda koryokapillaris flow alanının sağlıklı bireylere göre daha düşük olduğunu göstermiştir.
Anahtar Kelimeler: Diyabetik koroidopati; optik koherens tomografi anjiyografi
Objective: To evaluate the choriocapillaris flow areas of patients with non-proliferative diabetic retinopathy (NPDRP) using optical coherence tomography angiography (OCTA) flow assesment tool and to compare the results with those obtained in healthy controls. Material and Methods: In this retrospective study, patients who were followed up as having for very mild, mild and moderate NPDRP according to Early Treatment Diabetic Retinopathy Study in the retina unit of our clinic and patients who applied to general outpatient clinic for routine ophthalmologic examination were evaluated. The best corrected visual acuity values, anterior and posterior segment examinations, intraocular pressure values, axial lengths, central corneal thicknesses and refractive error measurements of patients were recorded. At the same time spectral domain optical coherence tomography (SD-OCT), fluorescein angiography and OCTA imaging were performed. All OCTA images were performed using the AngioVue software of RTVue XR Avanti (Opto-Vue, Inc., Fremont, CA, Version 2017.1.0.151) and 6×6 images were taken. The choriocapillaris flow area was calculated with flow assessment tool of OCTA in the regions of fixed circles with 1 mm, 2 mm and 3 mm radii with center of foveal avascular zone. Results: 30 eyes of 30 (21 females, 9 males) patients were examined as study group and 30 eyes of 30 (20 females 10 males) healthy subjects were examined as control group. The mean age of the study and control groups were 58.82±3.50 and 57.65±5.84 years, respectively. In OCTA measurements, choriocapillaris flow areas in all regions with three radius were found to be statistically lower in NPDRP group than the control group. (p=0.004, p=0.004 and p=0.008, respectively). Conclusion: In conclusion, this study was performed using OCTA as an imaging method and showed that choriocapillaris flow area was lower in patients with NPDRP than healthy subjects.
Keywords: Diabetic choroidopathy; optical coherence tomography angiography
- de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364-70. [Crossref] [PubMed]
- Zhang K, Ferreyra HA, Grob S, et al. Diabetic retinopathy: genetics and etiologic mechanisms. In: Ryan SJ, Sadda SR, Hinton DR, eds. Retina. 5th ed. London, United Kingdom: Elsevier Saunders; 2013. p.925-39. [Crossref]
- Early Treatment Diabetic Retinopathy Study Research Group. Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology. 1991;98(5 Suppl):807-22. [Crossref]
- Mansour AM, Schachat A, Bodiford G, Haymond R. Foveal avascular zone in diabetes mellitus. Retina. 1993;13(2):125-8. [Crossref]
- Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, et al. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology. 1998;98(7):1139-42. [Crossref]
- Garrity ST, Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5548-55. [Crossref] [PubMed]
- Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(4):367-73. [Crossref] [PubMed] [PMC]
- Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY, et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT130-40. [Crossref] [PubMed] [PMC]
- Lu Y, Simonett JM, Wang J, Zhang M, Hwang T, Hagag AM, et al. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2018;59(6):2212-21. [Crossref] [PubMed] [PMC]
- Conti FF, Qin VL, Rodrigues EB, Sharma S, Rachitskaya AV, Ehlers JP, et al. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol. 23 May 2018. Doi: 10.1136/bjophthalmol-2018-311903. [Crossref] [PubMed]
- Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015;35(11):2353-63. [Crossref] [PubMed]
- Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Opthalmol Vis Sci. 2017;58(1):190-6. [Crossref] [PubMed]
- Carnevali A, Sacconi R, Corbelli E, Tomasso L, Querques L, Zerbini G, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695-702. [Crossref] [PubMed]
- McLeod DS, Lutty GA. High-resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci. 1994;35(11):3799-811.
- Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163-80. [Crossref]
- Lupidi M, Coscas F, Cagini C, Fiore T, Spaccini E, Fruttini D, et al. Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography. Am J Ophthalmol. 2016;169:9-23. [Crossref] [PubMed]
- Couturier A, Mane V, Bonnin S, Erginay A, Massin P, Gaudric A, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35(11):2384-91. [Crossref] [PubMed]
- Bhanushali D, Anegondi N, Gadde SG, Srinivasan P, Chidambara L, Yadav NK, et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT519-25. [Crossref] [PubMed]
- Wang JC, Lains I, Providencia J, Armstrong GW, Santos AR, Gil P, et al. Diabetic choroidopathy: choroidal vascular density and volume in diabetic retinopathy with swept-source optical coherence tomography. Am J Ophthalmol. 2017;184:75-83. [Crossref] [PubMed]
- Nesper PL, Roberts PK, Onishi AC, Chai H, Liu L, Jampol LM, et al. Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(6):BIO307-15. [Crossref] [PubMed] [PMC]
- Conti FF, Qin VL, Rodrigues EB, Sharma S, Rachitskaya AV, Ehlers JP, et al. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol. 2018 May 23. Doi: 10.1136/bjophthalmol-2018-311903. [Epub ahead of print]. [Crossref] [PubMed]
- Lutty GA. Diabetic choroidopathy. Vision Res. 2017;139:161-7. [Crossref] [PubMed] [PMC]
.: Process List