Amaç: Bu çalışmanın amacı, diş hekimliği öğrencilerinin oral radyolojide yapay zekâ kullanımına bakış açılarını değerlendirmektir. Gereç ve Yöntemler: Oral radyolojide yapay zekânın kullanımı ve geleceği ile ilgili 17 soru ve 4 bölümden oluşan bir anket hazırlandı. İlk bölümde katılımcıların yaş, cinsiyet ve öğrenim görülen sınıf bilgileri elde edilmiştir. İkinci bölüm yapay zekâ farkındalığının, 3. Bölüm yapay zekânın oral radyolojideki potansiyel uygulamalarının, 4. Bölüm ise oral radyolojide yapay zekâ kullanımına ilişkin bakış açısının değerlendirildiği sorulardan oluşmaktaydı. Katılımcıların yanıtlarını 5'li Likert ölçeği ile (kesinlikle katılmıyorum, katılmıyorum, fikrim yok, katılıyorum, kesinlikle katılıyorum) değerlendirmeleri istendi. Anket Google Form üzerinden 1 hafta süre ile erişime açık tutuldu. Verilerin analizi için SPSS V.21 yazılımı (IBM Corp., Armonk, NY, ABD) kullanıldı. Bulgular: Ankete, yaşları 18-30 arasında değişen 259 diş hekimliği öğrencisi katıldı. Katılımcıların 214'ü (%82,9) gelecekte yapay zekâ ile tanı konulması konusunda olumlu yanıt (katılıyorum+kesinlikle katılıyorum) verdi. Kadın cinsiyet ve alt sınıfta öğrenim gören öğrencilerde yapay zekâ konusunda farkındalığın düşük olduğu saptandı (p<0,05). Yapay zekâ konusunda en büyük bilgi kaynağının sosyal medya (facebook, instagram vb.) olduğu görüldü. Katılımcıların %65,3'ü lisans, %48,2'si lisansüstü eğitimde yapay zekâ uygulamalarına ilişkin eğitimler verilmesi gerektiğini bildirdi. Sonuç: Diş hekimliği öğrencilerinin yapay zekâ konusunda bilgi sahibi oldukları ve gelecekte yapay zekâdan tanı koyma, tedavi planlama, görüntüleme yöntemi seçimi gibi alanlarda faydalanmak istedikleri görüldü.
Anahtar Kelimeler: Yapay zekâ; oral radyoloji; diş hekimliği öğrencisi
Objective: The aim of this study is to evaluate the perspectives of dental students on the use of artificial intelligence (AI) in oral radiology. Material and Methods: A questionnaire consisting of 17 questions and 4 sections about the use and future of AI in oral radiology was prepared. In the first part, the participants' age, gender and class information were obtained. The second part is the awareness of AI; the 3rd part covers the potential applications of AI in oral radiology; the 4th part consisted of questions evaluating the perspective on the use of AI in oral radiology. Participants were asked to rate their responses on a 5-point Likert scale (strongly disagree, disagree, neutral, agree, strongly agree). The survey was kept open for 1 week on Google Forms. SPSS V.21 software (IBM Corp., Armonk, NY, USA) was used for data analysis. Results: Two hundred and fifty nine dental students aged between 18-30 participated in the survey. Two hundred fourteen (82.9%) of the participants gave a positive answer (agree+strongly agree) about diagnosis with AI in the future. Awareness of AI was found to be low in female gender and lower class students (p<0.05). It has been seen that the biggest source of information on AI is social media (facebook, instagram, etc.). 65.3% of the participants stated that training on AI applications should be given in undergraduate education and 48.2% in graduate education. Conclusion: It has been seen that dentistry students have knowledge about AI and they want to benefit from AI in the future in areas such as diagnosis, treatment planning, and imaging method selection.
Keywords: Artificial intelligence; oral radiology; dental student
- Morris KC, Schlenoff C, Srinivasan V. A remarkable resurgence of artificial intelligence and its impact on automation and autonomy. IEEE Trans Autom Sci Eng. 2017;14(2):407-9. [Crossref] [PubMed] [PMC]
- Hinton G. Deep learning-a technology with the potential to transform health care. JAMA. 2018;320(11):1101-2. [Crossref] [PubMed]
- Yardımcıoğlu M, Şıtak B. Yapay zekâ teknolojisinin muhasebe alanına yansımaları: literatür incelemesi [Reflections of artificial intelligence accounting field: literatüre review]. Bilecik Şeyh Edebali Üniversitesi Sosyal Bilimler Dergisi. 2020;5(2):342-53. [Crossref]
- Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-46. [Crossref] [PubMed] [PMC]
- Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc. 2018;25(10):1419-28. [Crossref] [PubMed] [PMC]
- Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-41. [Crossref] [PubMed]
- Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017;7(1):15415. [Crossref] [PubMed] [PMC]
- Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017;7(1):11. [Crossref] [PubMed] [PMC]
- Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017;30(4):427-41. [Crossref] [PubMed] [PMC]
- Pauwels R. A brief introduction to concepts and applications of artificial intelligence in dental imaging. Oral Radiol. 2021;37(1):153-60. [Crossref] [PubMed]
- Leite AF, Vasconcelos KF, Willems H, Jacobs R. Radiomics and machine learning in oral healthcare. Proteomics Clin Appl. 2020;14(3):e1900040. [Crossref] [PubMed]
- Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent. 2019;49(1):1-7. [Crossref] [PubMed] [PMC]
- Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49(1):20190107. [Crossref] [PubMed] [PMC]
- Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the debonding of CAD/CAM composite resin crowns with AI. J Dent Res. 2019;98(11):1234-8. [Crossref] [PubMed]
- Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-111. [Crossref] [PubMed]
- Radke JC, Ketcham R, Glassman B, Kull R. Artificial neural network learns to differentiate normal TMJs and nonreducing displaced disks after training on incisor-point chewing movements. Cranio. 2003;21(4):259-64. Erratum in: Cranio. 2004;22(1):A-5. [Crossref] [PubMed]
- Bas B, Ozgonenel O, Ozden B, Bekcioglu B, Bulut E, Kurt M. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: a preliminary study. J Oral Maxillofac Surg. 2012;70(1):51-9. [Crossref] [PubMed]
- Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-23. [Crossref] [PubMed] [PMC]
- Ariji Y, Fukuda M, Kise Y, Nozawa M, Yanashita Y, Fujita H, et al. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(5):458-63. [Crossref] [PubMed]
- Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod. 2019;45(7):917-22.e5. [Crossref] [PubMed]
- Johnston SC. Anticipating and training the physician of the future: the importance of caring in an age of artificial intelligence. Acad Med. 2018;93(8):1105-6. [Crossref] [PubMed]
- Gong B, Nugent JP, Guest W, Parker W, Chang PJ, Khosa F, et al. Influence of artificial ıntelligence on Canadian medical students' preference for radiology specialty: a national survey study. Acad Radiol. 2019;26(4):566-77. [Crossref] [PubMed]
- Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-10. [Crossref] [PubMed] [PMC]
- Pauwels R, Del Rey YC. Attitude of Brazilian dentists and dental students regarding the future role of artificial intelligence in oral radiology: a multicenter survey. Dentomaxillofac Radiol. 2021;50(5):20200461. [Crossref] [PubMed] [PMC]
- Pinto Dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, et al. Medical students' attitude towards artificial intelligence: a multicentre survey. Eur Radiol. 2019;29(4):1640-6. [Crossref] [PubMed]
- Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021;85(1):60-8. [Crossref] [PubMed]
- Buyuk C. Should artificial intelligence integrate with dental education? An assessment through the dentomaxillofacial radiology perspective. Journal of Research in Dentistry. 2021;9(1):8. [Crossref]
- Keser G, Pekiner FN. Attitudes, perceptions and knowledge regarding the future of artificial intelligence in oral radiology among a group of dental students in Turkey: a survey. Clin Exp Health Sci. 2021;11(4):637-41. [Crossref]
- Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey. Imaging Sci Dent. 2020;50(3):193-8. [Crossref] [PubMed] [PMC]
.: Process List