Dirençli nişasta, sağlıklı insanların ince bağırsaklarında sindirilmeyen ve emilmeyen, ancak kolondaki yerleşik mikroflora ile kolonda fermente edilen nişasta veya nişastalı gıda ürünlerinin toplamıdır. Dirençli nişastanın kolonda fermente olması sonucu doymuş alifatik organik asitler ailesine ait olan asetat, propiyonat ve bütirat gibi kısa zincirli yağ asitleri üretilmektedir. Dirençli nişasta, yararlı bakterilerin büyümesini ve aktivitesini uyarma, kısa zincirli yağ asitleri üretme gibi fonksiyonel özellikleri nedeni ile prebiyotik olarak kabul edilmektedir. Dirençli nişastanın vücut ağırlığı regülasyonunu sağladığı, insülin duyarlılığı ve glukoz yanıtını iyileştirdiği, kan lipid düzeyleri üzerinde düşürücü etki gösterdiği bilinmektedir. İnflamatuar bağırsak hastalıkları, gastrointestinal sistem içerisinde kronik veya tekrarlayan immün aktivasyon ve inflamasyon ile karakterizedir. Dirençli nişastanın, kolonda sağlığa yararlı bakterilerin büyümesini uyarması, patolojik etkileri baskılaması ve inflamatuar yanıtı düzenlemesi nedeni ile inflamatuar bağırsak hastalıkları üzerinde yararlı etkilerinin olabileceği düşünülmektedir. Gastrointestinal kanalda kolonize olan bakteri, virüs, mantar, protozoa gibi mikroorganizmalardan oluşan ve organ gibi işlev gören ekosistem, bağırsak mikrobiyotası olarak adlandırılmaktadır. Dirençli nişastanın kolonda fermentasyonuyla; safra asidi dönüşümünü ve bütirat konsantrasyonlarını artırdığı, bütiratın ise normal epitel hücre büyümesi ve kolonik hastalıkların önlenmesi için önemli olduğu kanıtlanmıştır. Ayrıca dirençli nişasta, sağlığa yararlı bakterilerin büyümesini sağlayarak mikrobiyota üzerinde olumlu etki göstermektedir. Mikrobiyotayı düzenlemesi nedeni ile dirençli nişastanın hem inflamatuar bağırsak hastalıkları hem de diğer kronik hastalıklar üzerinde yararlı etkilerinin olabileceği düşünülmektedir.
Anahtar Kelimeler: Dirençli nişasta; inflamatuar bağırsak hastalıkları; mikrobiyota; prebiyotikler
Resistant starch is the sum of starch or starch food products that are not digested and absorbed in the small intestines of healthy people, but are fermented in the column by the microflora built into the colon. Fermentation of the resistant starch in the colon produces short chain fatty acids such as acetate, propionate and butyrate from the saturated family of aliphatic organic acids. Resistant starch is considered to be prebiotic because of its functional properties such as stimulating the growth and activity of beneficial bacteria and producing short chain fatty acids. Resistant starch is known to provide body weight regulation, improve insulin sensitivity and glucose response, and have a reducing effect on blood lipids. Inflammatory bowel diseases are characterized by chronic and recurrent immune activation and inflammation within the gastrointestinal tract. It is thought that resistant starch may have beneficial effects on inflammatory bowel diseases because it stimulates the growth of beneficial bacteria in the colon, suppresses pathological effects and regulates the inflammatory response. The ecosystem, which is composed of microorganisms such as bacteria, viruses, fungi and protozoa colonized in the gastrointestinal tract, is called the intestinal microbiota. Fermentation of resistant starch in the column; It increases bile acid conversion and butyrate concentrations. Butyrate has proven to be important for normal epithelial cell growth and prevention of colonic diseases. In addition, resistant starch has a positive effect on the microbiota by promoting the growth of health beneficial bacteria. Due to its microbiota regulation, it is thought to have beneficial effects on both inflammatory bowel diseases and other chronic diseases.
Keywords: Resistant starch; inflammatory bowel diseases; microbiota; prebiotics
- Lupton JR, Brooks JA, Butte NF, Caballero B, Flatt JP, Fried SK. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academy Press: 2002;5:589-768.
- T.C. Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu, Obezite, Diyabet ve Metabolik Hastalıklar Daire Başkanlığı. Türkiye Beslenme Rehberi 2015 (TÜBER). T.C. Sağlık Bakanlığı, Yayın No: 1031. Ankara: Kayhan Ajans: 2016. p.157.
- Raigond P, Ezekiel R, Raigond B. Resistant starch in food: a review. J Sci Food Agric. 2015;95(10):1968-78. [Crossref] [PubMed]
- Dupuis JH, Liu Q, Yada RY. Methodologies for increasing the resistant starch content of food starches: a review. Comprehensive Reviews in Food Science and Food Safety (CRFSFS). 2014;13(6):1219-34. [Crossref]
- Yang X, Darko KO, Huang Y, He C, Yang H, He S, et al. Resistant starch regulates gut microbiota: structure, biochemistry and cell signalling. Cell Physiol Biochem. 2017;42(1):306-18. [Crossref] [PubMed]
- Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. Theor Appl Genet. 2018;131(12):2495-511. [Crossref] [PubMed]
- Türker B, Yeyinli Savlak N. [Resistant starch: types, sources, beneficial physiological effects and functional properties]. Akademik Gıda. 2015;13(4):354-9.
- Maa Z, Boye JI. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: a review. Crit Rev Food Sci Nutr. 2018;58(7):1059-108. [Crossref] [PubMed]
- Okan Bakır B. [An overview to prebiotics, probiotics and synbiotic]. Beslenme ve Diyet Dergisi. 2012;40(2):178-82.
- de Sousa VMC, dos Santos EF, Sgarbieri VC. The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci. 2011;2(2):133-44. [Crossref]
- Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, et al. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr. 2015;6(2):198-205. [Crossref] [PubMed] [PMC]
- Higgins JA, Brown IL. Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr Opin Gastroenterol. 2013;29(2):190-4. [Crossref] [PubMed]
- Moura FA, de Andrade KQ, Dos Santos JCF, Araújo ORP, Goulart MOF. Antioxidant therapy for treatment of inflammatory bowel disease: does it work? Redox Biol. 2015;6:617-39. [Crossref] [PubMed] [PMC]
- Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46-54. [Crossref] [PubMed]
- Ayyıldız F, Ülker İ, Yılmaz B, Çakır Y, Akbulut G. [Intestinal diseases]. Akbulut G, editör. Gastrointestinal Sistem Hastalıklarında Tıbbi Beslenme Tedavisi. 1. Baskı. Ankara: Nobel Tıp Kitabevleri; 2017. p.327-33.
- Uranga JA, López-Miranda V, Lombó F, Abalo R. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol Rep. 2016;68(4):816-26. [Crossref] [PubMed]
- Bergeron F, Bouin M, D'Aoust L, Lemoyne M, Presse N. Food avoidance in patients with inflammatory bowel disease: what, when and who? Clin Nutr. 2018;37(3):884-9. [Crossref] [PubMed]
- Jacobasch G, Schmiedl D, Kruschewski M, Schmehl K. Dietary resistant starch and chronic inflammatory bowel diseases. Int J Colorectal Dis. 1999;14(4-5):201-11. [Crossref] [PubMed]
- Chapman MA, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut. 1994;35(1):73-6. [Crossref] [PubMed] [PMC]
- Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharm Ther. 2008;27(2):104-19. [Crossref] [PubMed]
- Bird AR, Conlon MA, Christophersen CT, Topping DL. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef Microbes. 2010;1(4):423-431. [Crossref] [PubMed]
- Bassaganya-Riera J, DiGuardo M, Viladomiu M, de Horna A, Sanchez S, Einerhand AW, et al. Soluble fibers and resistant starch ameliorate disease activity in interleukin-10-deficient mice with inflammatory bowel disease. J Nutr. 2011;141(7):1318-25. [Crossref] [PubMed]
- Hu Y, Le Leu RK, Christophersen CT, Somashekar R, Conlon MA, Meng XQ, et al. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis. 2016;37(4):366-75. [Crossref] [PubMed]
- Qian Y, Zhao X, Song JL, Zhu K, Sun P, Li GJ, et al. Inhibitory effects of resistant starch (RS3) as a carrier for stachyose on dextran sulfate sodium-induced ulcerative colitis in C57BL/6 mice. Exp Ther Med. 2013;6(5):1312-6. [Crossref] [PubMed] [PMC]
- Shen D, Bai H, Li Z, Yu Y, Zhang H, Chen L. Positive effects of resistant starch supplementation on bowel function in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2017;68(2):149-57. [Crossref] [PubMed]
- Majumder K, Fukuda T, Zhang H, Sakurai T, Taniguchi Y, Watanabe H, et al. Intervention of isomaltodextrin mitigates intestinal inflammation in a dextran sodium sulfate-induced mouse model of colitis via inhibition of toll-like receptor-4. J Agric Food Chem. 2017;65(4):810-7. [Crossref] [PubMed]
- Assisi RF; GISDI Study Group. Combined butyric acid/mesalazine treatment in ulcerative colitis with mild-moderate activity. Results of a multicentre pilot study. Minerva Gastroenterol Dietol. 2008;54(3):231-8.
- Özdemir A, Büyüktuncer Demirel Z. [The relation between diet and microbiota]. Journal of Biotechnology and Strategic Health Research (BSHR). 2017;1(Special issue):25-33.
- Tekin T, Çiçek B, Konyalıgil N. [The relationship between intestinal microbiota and obesity]. Journal of Health Sciences. 2018;27(1):95-9.
- Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J Agric Food Chem. 2008;56(13):5415-21. [Crossref] [PubMed]
- Koay YC, Wali JA, Luk AWS, Macia L, Cogger VC, Pulpitel TJ, et al. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites. FASEB J. 2019;33(7):8033-42. [Crossref] [PubMed]
- Zeng H, Huang C, Lin S, Zheng M, Chen C, Zheng B, et al. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. J Agric Food Chem. 2017;65(42):9217-25. [Crossref] [PubMed]
- Paturi G, Nyanhanda T, Butts CA, Herath TD, Monro JA, Ansell J. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat. J Food Sci. 2012;77(10):H216-23. [Crossref] [PubMed]
- Kieffer DA, Piccolo BD, Marco ML, Kim EB, Goodson ML, Keenan MJ, et al. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria. J Nutr. 2016;146(12):2476-90. [Crossref] [PubMed] [PMC]
- Maier TV, Lucio M, Lee LH, VerBerkmoes NC, Brislawn CJ, Bernhardt J, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio. 2017;8(5). pii: e01343-17. [Crossref] [PubMed] [PMC]
- Zhang L, Ouyang Y, Li H, Shen L, Ni Y, Fang Q, et al. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal weight subjects: a randomized crossover trial. Sci Rep. 2019;9(1):4736. [Crossref] [PubMed] [PMC]
- Ordiz MI, May TD, Mihindukulasuriya K, Martin J, Crowley J, Tarr PI, et al. The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children. Microbiome. 2015;3(1):37-46. [Crossref] [PubMed] [PMC]
- Vital M, Howe A, Bergeron N, Krauss RM, Jansson JK, Tiedje JM. Metagenomic insights into the degradation of resistant starch by human gut microbiota. Appl Environ Microbiol. 2018;84(23). pii: e01562-18. [Crossref] [PubMed] [PMC]
.: Process List