Objective: Determination of preanesthetic high risk during surgical procedures using fuzzy risk evaluation. Material and Methods: In this study for the high risk patient classification, five major criteria comprising cardiac, pulmonary, renal or liver diseases and diabetes mellitus and three minor criteria comprising patients' age, body mass index and cigarette smoking were chosen to define the high-risk group. Since the fuzzy logic gives the ability to use linguistic expressions, that include the intuition of human operators or experts during the decision making process, it this study by using fuzzy logic modelling, rules for high risks were developed. To reach this aim a new fuzzy logic decision system is proposed that uses four input variables to calculate the risk as a percentage that is the output of the fuzzy system. Results: Using Fuzzy risk evaluation; By taking into account the number of inputs and number of their corresponding membership functions, it is deduced that 270 fuzzy rules will be enough. Conclusion: In this study, a risk classification model was developed by combining the risk criteria defined by previous medical studies and clinical experience with a fuzzy logic model in the preoperative period. This developed fuzzy logic model needs to be investigated by selecting specific groups of patients and specific operations.
Keywords: Anesthesia; high risk; pre anesthetic evaluation; fuzzy logic risk evaluation
Amaç: Bu çalışmada bulanık mantık risk değerlendirmesi ile cerrahi girişim sırasında preanestezik yüksek riskin belirlenmesi amaçlanmıştır. Gereç ve Yöntemler: Bu çalışmada yüksek risk kriterli hastaların sınıflandırılmasında: Kalp, akciğer, böbrek, karaciğer hastaları ve diyabetus mellitus olan hastalar major risk kriterli olarak, hastanın yaşı, beden kitle indeksi ve sigara kullanımı ise hastalar için minör risk kriteri olarak belirlenmiştir. Bir minör ve bir major kriteri olan hastalar yüksek riskli olarak adlandırılmıştır. Ardından, bulanık mantık modelleme yöntemi kullanarak, yüksek riskler için kurallar geliştirilmiştir. Bulanık mantık, karar verme sürecinde operatör veya uzman insanların sezgilerini içeren dilsel ifadelerin kullanımına imkan verdiği için, bu çalışmada yüksek risk hesabı yapmak için bulanık mantık kullanılarak risk hesabında uygulanacak kurallar belirlenmiştir. Bu amaca ulaşabilmek maksadıyla çıkış olarak yüzdelik risk değerini hesaplamak için dört adet giriş değişkeni kullanan yeni bir bulanık mantıklı karar verme sistemi önerilmiştir. Bulgular: Bulanık mantık risk analizi ile belirlenen girişler ve bunlara karşılık gelen üyelik fonksiyonlarının sayısı dikkate alınarak, 270 adet bulanık mantık kuralı belirlenmiştir. Sonuç: Bu çalışma ile ameliyat öncesi dönemde önceki tıbbi çalışmalar ve klinik tecrübeler ile belirlenmiş risk kriterlerini bir bulanık mantık karar verme modeli ile birleştirerek bir risk sınıflandırması modeli geliştirilmiştir. Bu geliştirilen bulanık mantık modelinin belirli hasta grupları ve belirli ameliyatlar seçilerek araştırılmasına ihtiyaç vardır.
Anahtar Kelimeler: Anestezi; yüksek risk; preanestezik değerlendirme; bulanık mantık risk değerlendirmesi
- Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338-53. [Crossref]
- Ergin A, Alkan G, Sandal B, Özçelebi S. Application of fuzzy among airlines which transport an air export cargo. Türkiye: 7. Ulusal Lojistik ve Tedarik Zinciri Kongresi; 2008. p.103-11.
- Hacioglu Y. Multiple-input multiple-output proportional-integral-proportional-derivative type fuzzy logic controller design for a twin rotor system. Journal of Vibroengineering. 2015;17(6):3104-10.
- Georgescu V. Capturing and tuning nonlinear characteristics of economic stabilization systems by fuzzy control techniques. Com putational Economics. 2002;19(3):24771.
- Adlassnig KP. Fuzzy set theory in medical diagnosis. IEEE Trans Syst Man Cybern Syst. 1986;16(2):260-5. [Crossref]
- Iraji MS. Prediction of post-operative survival expectancy in thoracic lung cancer surgery with soft computing. J Appl Biomed. 2017;15(2):151-9. [Crossref]
- McCloskey CA, Wilson MA, Hughes SJ, Eid GM. Laparoscopic colorectal surgery is safe in the high-risk patient: a NSQIP risk-adjusted analysis. Surgery. 2007;142(4):594-7. [Crossref]
- Plocek MD, Geisler DP, Glennon EJ, Kondylis P, Reilly JC. Laparoscopic colorectal surgery in the complicated patient. Am J Surg. 2005;190(6):882-5. [Crossref]
- Marks JH, Kawun UB, Hamdan W, Marks G. Redefining contraindications to laparoscopic colorectal resection for high-risk patients. Surg Endosc. 2008;22(8):1899-904. [Crossref]
- Salihoglu Z, Demiroluk S, Dikmen Y. Respiratory mechanics in morbid obese patients with choronic obstructive pulmonary disease and hypertension during pneumoperitoneum. Eur J Anesthesiol. 2003;20(8):658-61. [Crossref]
- Demiroluk S, Salihoglu Z, Zengin K, Kose Y, Taskin M. The effects of pneumoperitoneum on respiratory mechanics during bariatric surgery. Obes Surg. 2002;12(3):376-9. [Crossref]
- Salihoglu Z, Demiroluk S, Cakmakkaya S, Gorgun E, Kose Y. Influence of the patient positioning on respiratory mechanics during pneumoperitoneum. Middle East J Anesthesiol. 2002;16(5):521-8.
- Demiroluk S, Salihoglu Z, Bakan M, Bozkurt P. Effects of intraperitoneal and extraperitoneal carbondioxide insufflation on blood gases during perioperative period. J Laparoendosc Adv Surg Tech A. 2004;14(4):219-22. [Crossref]
- Arteaga González I, López-Tomassetti Fernández EM, Hernández Piñero Y, Martín Malagón A, Arranz Durán J, Bethencourt Muñoz S, et al. Effectiveness of colorectal laparoscopic surgery on patients at high anesthetic risk: an intervention cohort study. Int J Colorectal Dis. 2008;23(1):101-6. [Crossref]
- Salihoglu Z, Aydogan F. Laparoscopic colorectal surgery in the complicated patient. Am J Surg. 2008;196(6):1004. [Crossref]
- Hermeneit S, Müller M, Terzic A, Rodehorst A, Schamberger M, Böttger T. [Influenceable surgical and anesthesiological risk factors for the development of cardiac and pulmonary complications in laparoscopic surgery of the colon]. Zentralbl Chir. 2008;133(2):156-63.[Crossref]
- Martínek L, Dostalík J, Vávra P, Guniková P, Gunka I. [Implementation of POSSUM scoring system in assessing morbidity after laparoscopic colorectal surgery]. Rozhl Chir. 2008;87(1):26-31.
- Kang CY, Halabi WJ, Chaudhry OO, Nguyen V, Ketana N, Carmichael JC, et al. A nationwide analysis of laparoscopy in high-risk colorectal surgery patients. J Gastrointest Surg. 2013;17(2):382-91. [Crossref]
- Salihoglu Z, Baca B, Koksal S, Hakki Hamzaoglu I, Karahasanoglu T, Avci S, et al. Analysis of laparoscopic colorectal surgery in high-risk patients. Surg Laparosc En dosc Percutan Tech. 2009;19(5):397-400. [Crossref]
- Yucel G, Cebi S, Hoege B, Ozok AF. A fuzzy risk assessment model for hospital information system implementation. Expert Syst Appl. 2011;39(1):1211-8. [Crossref]
- Yılmaz A, Arı S, Kocabıçak Ü. Risk analysis of lung cancer and effects of stress level on cancer risk through neuro-fuzzy model. Comput Methods Programs Biomed. 2016;137:35-46. [Crossref]
- Dervishi A. Fuzzy risk stratification and risk assessment model for clinical monitoring in the ICU. Comput Biol Med. 2017;87:169-78.[Crossref]
- Khanmohammadi S, Khameneh HS, Lewis HW, Chou CA. Prediction of mortality and survival of patients after cardiac surgery using fuzzy EuroSCORE system and reliability analysis. Procedia Comput Sci. 2013;20:36873. [Crossref]
.: Process List