Objective: This study was conducted to determine the rate and risk factors of computer game addiction and its relation with the quality of life in preadolescents. Material and Methods: The sample of this descriptive and cross-sectional study consisted of 439 (ngirls=239, nboys=200) preadolescents. Data were collected using a family and child information form, the Computer Game Addiction Scale for Children (CGASC), and the Pediatric Quality of Life Inventory child form. Data were assessed using descriptive statistics, the independent samples t-test, one-way analysis of variance (Post-hoc Tukey), Pearson correlation, and univariate and multiple logistic regression analysis. Results: According to the CGASC scores of the preadolescents, 12.8% were determined as ''risky users''. Multiple binary logistic regression analysis results revealed the most important factors affecting the possibility of preadolescents' becoming risky users for computer game addiction as gender, weekend computer gaming duration (hours/day), and the quality of life scores (p<0.01). There was a negative, weak and (p<0.001) significant relationship between computer game addiction scores and quality of life scores of preadolescents. The increase in quality of life scores of preadolescents decreased the possibility of being a ''risky user'' in terms of computer game addiction (p<0.001). Conclusion: It is recommended to attempt to increase the quality of life of preadolescents in order to protect them from computer game addiction.
Keywords: Computer game addiction; preadolescents; quality of life
Amaç: Bu çalışma, preadölesanlarda bilgisayar oyun bağımlılığını, etkileyen risk faktörlerini ve yaşam kalitesi ile ilişkisini belirlemek amacıyla yapılmıştır. Gereç ve Yöntemler: Kesitsel ve tanımlayıcı tipte olan bu çalışmanın örneklemini, 439 preadölesan (kız: n=239, erkek: n=200) oluşturmuştur. Veriler, aile ve çocuk bilgi formu, Çocuklar için Bilgisayar Oyun Bağımlılığı Ölçeği ve Pediatrik Yaşam Kalitesi Envanteri çocuk formu kullanılarak toplanmıştır. Veriler, tanımlayıcı istatistikler, bağımsız örneklem t-testi, varyans analizi (Post-hoc Tukey), Pearson korelasyon, ''univariate'' ve ''multiple'' lojistik regresyon analizi kullanılarak değerlendirilmiştir. Bulgular: Preadölesanların, Bilgisayar Oyun Bağımlılığı Ölçeği puanlarına göre %12,8'inin ''riskli kullanıcı'' olduğu belirlenmiştir. Yapılan multiple lojistik regresyon analizi sonuçlarına göre preadölesanların bilgisayar oyun bağımlılığı açısından ''riskli kullanıcı'' olma durumlarını etkileyen en önemli faktörlerin; cinsiyet, hafta sonu bilgisayar oyun süresi (h/gün) ve yaşam kalitesi puanları olduğu bulunmuştur (p<0,01). Preadölesanların, bilgisayar oyun bağımlılığı puanları ile yaşam kalitesi puanları arasında negatif yönde ve zayıf düzeyde anlamlı bir ilişki bulunmuştur (p<0,001). Preadölesanların yaşam kalitesi puanlarındaki artış, bilgisayar oyunu bağımlılığı açısından ''riskli kullanıcı'' olma olasılığını azaltmıştır (p<0,001). Sonuç: Preadölesanları bilgisayar oyun bağımlılığından korumada onların yaşam kalitelerini artırmaya yönelik girişimlerin yapılması önerilmektedir.
Anahtar Kelimeler: Bilgisayar oyun bağımlılığı; ergenler; yaşam kalitesi
- Irmak AY, Erdoğan S. Predictors for digital game addiction among Turkish adolescents: A cox's interaction model-based study. J Addict Nurs. 2019;30(1):49-56. [Crossref] [PubMed]
- Aksoy Z, Erol S. Digital game addiction and lifestyle behaviors in Turkish adolescents. Clin Exp Neurol. 2021;11:589-97. [Crossref]
- Paulus FW, Ohmann S, von Gontard A, Popow C. Internet gaming disorder in children and adolescents: a systematic review. Dev Med Child Neurol. 2018;60(7):645-59. [Crossref] [PubMed]
- Gentile D. Pathological video-game use among youth ages 8 to 18: a national study. Psychol Sci. 2009;20(5):594-602. Erratum in: Psychol Sci. 2009;20(6):785. [Crossref] [PubMed]
- Horzum BM, Ayas T, Çakır Balta Ö. Çocuklar için bilgisayar oyun bağımlılığı ölçeği [Computer game addiction scale for children]. Turkish Psychol Couns Guid J. 2008;3(30):76-88. [Link]
- Stockdale L, Coyne SM. Parenting paused: Pathological video game use and parenting outcomes. Addict Behav Rep. 2019;11:100244. [Crossref] [PubMed] [PMC]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-5. 5th ed. Washington: APA; 2013. [Crossref]
- Kaya A, Dalgiç AI. How does internet addiction affect adolescent lifestyles? results from a school-based study in the mediterranean region of Turkey. J Pediatr Nurs. 2021;59:e38-e43. [Crossref] [PubMed]
- Karaca S, Karakoc A, Can Gurkan O, Onan N, Unsal Barlas G. Investigation of the online game addiction level, sociodemographic characteristics and social anxiety as risk factors for online game addiction in middle school students. Community Ment Health J. 2020;56(5):830-8. [Crossref] [PubMed]
- Esposito MR, Serra N, Guillari A, Simeone S, Sarracino F, Continisio GI, et al. An investigation into video game addiction in pre-adolescents and adolescents: a cross-sectional study. Medicina (Kaunas). 2020;56(5):221. [Crossref] [PubMed] [PMC]
- Seok HJ, Min Lee J, Park C, Young Park J. Review Understanding internet gaming addiction among South Korean adolescents through photovoice. Child Youth Serv Rev. 2018;94:35-42. [Crossref]
- Resaland GK, Aadland E, Moe VF, Kolotkin RL, Anderssen SA, Andersen JR. Effects of a physical activity intervention on schoolchildren's health-related quality of life: The active smarter kids (ASK) cluster-randomized controlled trial. Prev Med Rep. 2018;13:1-4. [Crossref] [PubMed] [PMC]
- Çam HH, Üstüner Top F. Overweight, obesity, weight-related behaviors, and health-related quality of life among high-school students in Turkey. Eat Weight Disord. 2020;25(5):1295-302. [Crossref] [PubMed]
- Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ Res. 2018;164:149-57. [Crossref] [PubMed]
- García-Hermoso A, Alonso-Martinez AM, Ramírez-Vélez R, Izquierdo M. Effects of exercise intervention on health-related physical fitness and blood pressure in preschool children: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020;50(1):187-203. [Crossref] [PubMed]
- Goodman W, Jackson SE, McFerran E, Purves R, Redpath I, Beeken RJ. Association of Video game use with body mass index and other energy-balance behaviors in children. JAMA Pediatr. 2020;174(6):563-72. [Crossref] [PubMed] [PMC]
- Phan TT, Tucker JM, Siegel R, Christison AL, Stratbucker W, Werk LN, et al. Electronic gaming characteristics associated with class 3 severe obesity in youth who attend the pediatric weight management programs of the COMPASS network. Child Obes. 2019;15(1):21-30. [Crossref] [PubMed] [PMC]
- Kaakinen P, Kyngäs H, Kääriäinen M. Technology-based counseling in the management of weight and lifestyles of obese or overweight children and adolescents: A descriptive systematic literature review. Inform Health Soc Care. 2018;43(2):126-41. [Crossref] [PubMed]
- Ankara HG, Baykal D. The socioeconomic and sociodemographic factors affecting digital gaming addiction among Generation Z. Telemat Informatics Reports. 2022;8:100032. [Crossref]
- Küçükturan AG, Horzum MB, Korkmaz G, Üngören Y. Investigating the relationship between personality, chronotype, computer game addiction, and sleep quality of high school students: A structural equation modelling approach. Chronobiol Int. 2022;39(4):590-601. [Crossref] [PubMed]
- Aziz N, Nordin MJ, Abdulkadir SJ, Salih MMM. Digital addiction: Systematic review of computer game addiction impact on adolescent physical health. Electronics. 2021;10(9):1-18. [Crossref]
- Çakır H. Bilgisayar oyunlarına ilişkin ailelerin görüşleri ve öğrenci üzerindeki etkilerin belirlenmesi [Taking the opinions of parents and specifying the effects on students about computer games]. Mersin Univ J Fac Educ. 2013;9(2):138-50. [Link]
- Dündar A, Güllü M, Arslan C, Murathan F. İlköğretim öğrencilerinin bilgisayar oyun bağımlılıklarının incelenmesi [Research about computer game addıctıons of elemantary students]. Adiyaman Univ J Soc Sci. 2013;5(9):89-100. [Link]
- Göldağ B. Lise öğrencilerinin dijital oyun bağımlılık düzeylerinin demografik özelliklerine göre incelenmesi [The investigation of the digital play dependency levels of high school students with respect to demographic characteristics]. YYU J Educ Fac. 2018;15(1):1287-315. [Link]
- Kaya A, Pazarcıkcı F. Structural equation modeling analysis of risk factors for digital game addiction in adolescents: A web-based study. Arch Psychiatr Nurs. 2023;43:22-8. [Crossref] [PubMed]
- Karayağiz Muslu G, Aygun O. An analysis of computer game addiction in primary school children and its affecting factors. J Addict Nurs. 2020;31(1):30-8. [Crossref] [PubMed]
- Oflu A, Yalcin SS. Video game use among secondary school students and associated factors. Arch Argent Pediatr. 2019;117(6):e584-e91. English, Spanish. [Crossref] [PubMed]
- Neyzi O, Günöz H, Furman A, Bundak R, Gökçay G, Darendeliler F, et al. Türk çocuklarında vücut ağırlığı, boy uzunluğu, baş çevresi ve vücut kitle indeksi referans değerleri [Reference Values of body weight, stature, head circumference, and body mass index in Turkish children]. J Pediatr. 2008;51(1):1-14. [Link]
- Sönmez S, Başbakkal Z. Türk çocuklarının pediatrik yaşam kalitesi 4.0 envanterinin (PedsQL 4.0) geçerlilik ve güvenilirlik çalışması [A validation and reliabilition study for the pediatric quality of life inventory (PedsQL 4.0) on Turkish children]. Turkiye Klin J Pediatr. 2007;16:229-37. [Link]
- Karaca S, Gök C, Kalay E, Başbuğ M, Hekim M, Onan N, et al. Ortaokul öğrencilerinde bilgisayar oyun bağımlılığı ve sosyal anksiyetenin incelenmesi [Investigating the association between computer game addiction and social anxiety in secondary school students]. Clin Exp Heal Sci. 2016;6(1):14-9. [Crossref]
- Lemmens J, Valkenburg P, Peter J. Development and validation of a game addiction scale for adolescents. Media Psychol. 2009;12(1):77-95. [Crossref]
- Han DH, Lyoo IK, Renshaw PF. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J Psychiatr Res. 2012;46(4):507-15. [Crossref] [PubMed] [PMC]
- Hoeft F, Watson CL, Kesler SR, Bettinger KE, Reiss AL. Gender differences in the mesocorticolimbic system during computer game-play. J Psychiatr Res. 2008;42(4):253-8. [Crossref] [PubMed]
- Fullerton S, Taylor AW, Dal Grande E, Berry N. Measuring physical inactivity: do current measures provide an accurate view of "sedentary" video game time? J Obes. 2014;2014:287013. [Crossref] [PubMed] [PMC]
- Nightingale CM, Rudnicka AR, Donin AS, Sattar N, Cook DG, Whincup PH, et al. Screen time is associated with adiposity and insulin resistance in children. Arch Dis Child. 2017;102(7):612-6. [Crossref] [PubMed] [PMC]
.: Process List