Objective: This research aims to examine the differences between domestic and foreign players in the Turkish Basketball Super League in terms of average playing time and usage rates. Material and Methods: For this analysis, the 6 most recent seasons under the 5+1 foreign player rule were examined. The 2019-2020 season was excluded due to its incompleteness caused by the coronavirus disease2019 pandemic. Consequently, 5 seasons (2018/2019-2023/2024) were analyzed. Data on average usage rates and playing time were collected from realgm.com. The distribution of each season's statistics was tested for normality using the Shapiro-Wilk test. The comparison was conducted using the independent samples t-test for normally distributed variables and the Mann-Whitney U test for the variables that did not follow a normal distribution in the R programming environment. Results: Despite variations in the ratio of domestic and foreign players each season, no statistically significant difference was found in the average number of games played. Conversely, statistically significant differences were found in both average playing time and average usage rates between domestic and foreign players in each analyzed season (p<0.01). Conclusion: In each investigated season, foreign players demonstrated significantly higher average playing time and usage rates compared to domestic players. These results suggest that further analysis is necessary to assess their impact on club performance and national team success.
Keywords: Basketball; basketball player analysis; player performance; recruiting athletes; usage rate
Amaç: Bu çalışmanın amacı, Türkiye Basketbol Süper Ligi'nde mücadele eden yerli ve yabancı oyuncuların aldıkları sürelerin ve top kullanma oranlarının karşılaştırılmasının yapılmasıdır. Gereç ve Yöntemler: Bunun için çalışmada 5+1 yabancı kuralının uygulandığı son 6 sezondan koronavirüs hastalığı-2019 pandemisi nedeniyle tamamlanmayan 2019-2020 sezonu çıkartılarak, toplamda 5 sezon (2018/2019-2023/2024) analiz edilmiştir. Çalışmada kullanılan istatistikler realgm.com web sitesinden alınmıştır. Her bir sezon istatistiğinin dağılımının normal dağılıma uyup uymadığı Shapiro-Wilk testi ile incelenmiştir. Karşılaştırma, normal dağılım gösteren değişkenler için bağımsız örneklem t-testi, normal dağılım göstermeyen değişkenler için ise Mann-Whitney U testi kullanılarak R programlama dilinde gerçekleştirilmiştir. Bulgular: Her bir sezonda yerli ve yabancı oyuncu dengesinde değişimler olmasına rağmen, oynadıkları ortalama maç sayılarında istatistiksel olarak anlamlı bir fark olmadığı tespit edilmiştir. Buna karşın incelenen her sezonda yerli ve yabancı oyuncular arasında hem ortalama oyun sürelerinde hem de ortalama top kullanma oranında istatistiksel olarak anlamlı farklılık tespit edilmiştir (p<0,01). Sonuç: İncelenen her sezonda ortalama oyun sürelerinde ve top kullanma oranlarında yabancı oyuncuların yerli oyunculara üstünlük kurduğu tespit edilmiştir. Bu sonuçların, kulüp performansları ve milli takım başarıları üzerindeki etkilerini değerlendirmek için daha kapsamlı analizler yapılması önerilmektedir.
Anahtar Kelimeler: Basketbol; basketbol oyuncu analizi; oyuncu performansı; devşirme oyuncular; top kullanma oranı
- Özmen MU. Short-term impact of a foreign player quota liberalisation policy on domestic player performance: evidence from a regression discontinuity design. International Journal of Sport Policy and Politics. 2019;11(1):39-55. [Crossref]
- Koba TH, Nagel MS, Watanabe NM, Yan G, Southall RM, Kidd VK. An exploration of professional US-based basketball players competing in Turkey. Journal of Global Sport Management. 2023;8(1):161-82. [Crossref]
- Chiba N. The glocalization and management of professional basketball leagues: the Euroleague, National Basketball League of Australia and bj-league of Japan. Asia Pacific Journal of Sport and Social Science. 2015;4(2):134-43. [Crossref]
- Türkiye Basketbol Federasyonu [İnternet]. TBF Başkanı Türkoğlu, Türkiye Sigorta Basketbol Süper Ligi Fikstür Kura Çekimi Sonrasında Açıklamalarda Bulundu [Erişim tarihi: 9 Mayıs 2024]. Erişim linki: [Link]
- BASKED [İnternet]. Yabancı Kuralları ve Yerli Sporculara Dair İstatistik Çalışmamız [Erişim tarihi: 9 Mayıs 2024]. Erişim linki: [Link]
- Guimarãe E, Santos A, Santos E, Tavares F, Janeira MA. National players vs. foreign players: what distinguishes their game performances? A study in the portuguese basketball league. RICYDE Revista Internacional de Ciencias del Deporte. 2018;14(54):374-81. [Link]
- Wang X, Han B, Zhang S, Zhang L, Calvo AL, Gomez MÁ. The differences in the performance profiles between native and foreign players in the Chinese basketball association. Frontiers in Psychology. 2022;12(2021):788498. [Crossref]
- Harbili E, Harbili S, Yalçın CG. Comparison of efficiency ratings of Turkish and international basketball players playing in the Turkish Basketball League according to their positions. World Applied Science Journal. 2011;14(5):745-9. [Link]
- Yalçın YG, Altın M, Demir H. Comparison of basketball performance and efficiency scores between Turkish basketball league players who are Turkish, American and other nations origin. European Journal of Physical Education and Sport Science. 2016;2(4). [Crossref]
- Özmen MU. Foreign player quota, experience and efficiency of basketball players. Journal of Quantitative Analysis in Sports. 2012;8(1):7-7. [Crossref]
- Çene E, Özdalyan F, Parim C, Mancı E, İnan T. How do European and non-European players differ: evidence from EuroLeague basketball with multivariate statistical analysis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. 2024;0(0):1-20. [Crossref]
- Ciğerci AE, Genç H, Sever O. EuroLeague dörtlü final oynayan takımlardaki yerli ve yabancı oyuncuların karşılaştırılması [The comparison of domestic and foreign players in the teams playing the final four in Euroleague]. Beden Eğitimi ve Spor Bilimleri Dergisi. 2020;22(2):44-54. [Link]
- Gasperi L, Conte D, Leicht A, Gómez-Ruano MÁ. Game related statistics discriminate national and foreign players according to playing position and team ability in the Women's Basketball EuroLeague. Int J Environ Res Public Health. 2020;17(15):5507. [PubMed] [PMC]
- Sarlis V, Tjortjis C. Sports analytics-evaluation of basketball players and team performance. Information Systems. 2020;93:101562. [Crossref]
- Facchinetti T, Metulini R, Zuccolotto P. Filtering active moments in basketball games using data from players tracking systems. Annals of Operations Research. 2023;325(1):521-38. [Crossref]
- Evans BA. From college to the NBA: what determines a player?s success and what characteristics are NBA franchises overlooking? Applied Economics Letters. 2018;25(5):300-4. [Crossref]
- Wang Y, Liu W, Liu X. Explainable AI techniques with application to NBA gameplay prediction. Neurocomputing. 2022;483:59-71. [Link]
- Lorenzo J, Lorenzo A, Conte D, Giménez M. Long-term analysis of Elite Basketball Players' game-related statistics throughout their careers. Front Psychol. 2019;10:421. [Crossref] [PubMed] [PMC]
- Kubatko J, Oliver D, Pelton K, Rosenbaum DT. A starting point for analyzing basketball statistics. Journal of quantitative analysis in sports. 2007;3(3):1-1. [Crossref]
- Assani S, Mansoor MS, Asghar F, Li Y, Yang F. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: a parallel DEA network with shared inputs. Journal of Industrial and Management Optimization. 2022;18(3):2001-16. [Crossref]
- Casals M, Martinez AJ. Modelling player performance in basketball through mixed models. International Journal of performance analysis in sport. 2013;13(1):64-82. [Crossref]
- Jakovljevic S, Pajic Z, Gardasevic B. The influence of certain cognitive abilities on situation efficiency of basketball players. Facta Universitatis, Series: Physical Education and Sport. 2016;13(2):283-90. [Link]
- Sampaio J, Drinkwater EJ, Leite NM. Effects of season period, team quality, and playing time on basketball players? game-related statistics. European Journal of Sport Science. 2010;10(2):141-9. [Crossref]
- Blanco V, Salmerón R, Gómez-Haro S. A multicriteria selection system based on player performance: case study-the spanish acb basketball league. Group Decision and Negotiation. 2018;27(1):1029-46. [Crossref]
- Keskin S. Comparison of several univariate normality tests regarding Type I error rate and power of the test in simulation based small samples. Journal of Applied Science Research. 2006;2(5):296-300. [Link]
- Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics. 2011;2(1):21-33. [Link]
- Cohen J. A power primer. Psychol Bull. 1992;112(1):155-9. [Crossref] [PubMed]
- Alvarez J, Forrest D, Sanz I, Tena JdD. Impact of importing foreign talent on performance levels of local co-workers. Labour Economics. 2011;18(3):287-96. [Crossref]
- Wang GY. Cultural group diversity and team performance: The importance of international employees. Scottish Journal of Political Economy. 2024:e12411. [Crossref]
- Brox E, Krieger T. Birthplace diversity and team performance. Labour Economics. 2022;79:102288. [Crossref]
- Shlonska O, Borysova O, Kostyukevich V, Yakusheva Y, Adamchuk V, Strelnykova Y. Formation of national volleyball teams: the impact of player migration. Journal of Physical Education and Sport. 2024;24(8):1843-952. [Crossref]
- Ermiş E, Ermiş A, Erilli NA, Konca E. The association between basketball players? times in the game and their performance: a comparison of Euroleague-Eurobasket. Spor ve Performans Araştırmaları Dergisi. 2019;10(2):114-22. [Crossref]
- Wang GY. The role of diversity in determining team efficiency: an empirical sports team analysis. Journal of Data, Information and Management. 2024;6(1):85-98. [Crossref]
- Alagappan M. From 5 to 13: Redefining the positions in basketball. In: MIT Sloan sports analytics conference; Boston, MA: March 2-3, 2012.
- Kalman S, Bosch J. NBA lineup analysis on clustered player tendencies: a new approach to the positions of basketball&modeling lineup efficiency of soft lineup aggregates. In: MIT Sloan Sports Analytics Conference; Boston, MA: March 6-7, 2020.
.: Process List