Amaç: Kronik kabızlık çocukluk çağında en sık görülen hastalıklardan biridir ve çocuklardaki kabızlık vakalarının %95'i fonksiyoneldir. Bağırsak ekosistemindeki bozulmanın kabızlık ile yakından ilişkili olduğu gösterilmiştir. Bakır (Cu), çinko (Zn), krom (Cr) ve selenyum (Se) önemli eser elementlerdir, vücuttaki tüm sistemlerin normal işleyişinde önemli rol oynarlar ve bağırsak ekosistemi için çok önemlidirler. Bu çalışmanın amacı, çocuklarda kronik kabızlıkta eser elementlerin rolünü araştırmaktır. Gereç ve Yöntemler: Bu çalışma, Ocak-Ekim 2020 tarihleri arasında çocuk gastroenteroloji polikliniğinde Roma IV kriterlerine göre kronik kabızlık tanısı alan pediatrik hastalarda gerçekleştirildi. Kronik kabızlığı olan hastaların serum bakır, çinko, krom ve selenyum konsantrasyonları ölçüldü. Bulgular: Çalışma grubu kronik kabızlığı olan 61 (%59 kız, %41 erkek; yaş: 6,9±4,7 yıl) çocuk; kontrol grubu 30 (%60 kız, %40 erkek; yaş: 7,0±3,3 yıl) sağlıklı çocuktan oluşuyordu. Eser element düzeylerine göre gruplar arasında anlamlı farklılık yoktu (tüm analizler için p>0,05). Cu seviyeleri ile yaş arasında zayıf, negatif bir ilişki bulundu (r=-0,266, p=0,038). Se ile konstipasyon süresi arasında zayıf, pozitif bir ilişki bulundu (r=0,324, p=0,011). Cinsiyete göre eser element düzeyleri arasında anlamlı farklar bulunmadı (tüm analizler için p>0,05). Hastaların %23'ünde, kontrol grubunun %26,7'sinde malnütrisyon (hafif) saptandı (p=0,34). Hasta grubu içinde malnütrisyonu olan hastalarda, Se seviyesinin normal kiloda olanlara göre anlamlı yüksek olduğu saptandı (p=0,037). Hasta grubunda Zn ile ağırlık ve boy z skorları arasında negatif yönde zayıf bir korelasyon saptandı (r=-0,260, p=0,043, r=-0,317, p=0,013). Sonuç: Eser elementler, özellikle selenyum, çocuklarda kronik konstipasyon ve konstipasyon süresi ile ilişkili olabilir. Çocuklarda eser elementler ve kabızlık arasındaki ilişkiyi anlamak için daha kapsamlı prospektif çalışmalara ihtiyaç vardır.
Anahtar Kelimeler: Kronik konstipasyon; eser element; çocuk
Objective: Chronic constipation is one of the most common diseases in childhood and 95% of constipation cases in children are functional. It has been shown that disruption in the intestinal ecosystem is closely related to constipation. Copper (Cu), zinc (Zn), chromium (Cr) and selenium (Se) are important trace elements, they play an important role in the normal functioning of all systems in the body and are very important for the intestinal ecosystem. The aim of this study is to investigate the role of trace elements in chronic constipation in children. Material and Methods: This study was carried out in pediatric patients diagnosed with chronic constipation according to Rome IV criteria in the pediatric gastroenterology outpatient clinic between January and October 2020. Serum copper, zinc, chromium and selenium concentrations of patients with chronic constipation were measured. Results: The study group consisted of 61 children with chronic constipation (59% girls, 41% boys; age: 6.9±4.7 years); the control group consisted of 30 healthy children (60% girls, 40% boys; age: 7.0±3.3 years). There was not any significant differences between the groups according to trace element levels (for all analysis, p>0.05). A weak, negative correlation was found between Cu levels and age (r=-0.266, p=0.038). A weak, positive correlation was found between Se and duration of constipation (r=0.324, p=0.011). No significant differences were found between trace element levels by gender (for all analyses, p>0.05). Malnutrition (mild) was detected in 23% of the patients and 26.7% of the control group (p=0.34). In patients with malnutrition in the patient group, Se level was found to be significantly higher than those with normal weight (p=0.037). There was a weak negative correlation between Zn and weight and height z scores in the patient group (r=- 0.260, p=0.043, r=-0.317, p=0.013). Conclusion: Trace elements, especially Selenium, may be associated with chronic constipation and duration of constipation in children. More comprehensive prospective studies are needed to understand the relationship between trace elements and constipation in children.
Keywords: Chronic constipation; trace element; child
- Mugie SM, Benninga MA, Di Lorenzo C. Epidemiology of constipation in children and adults: a systematic review. Best Pract Res Clin Gastroenterol. 2011;25(1):3-18. [Crossref] [PubMed]
- Koppen IJ, Nurko S, Saps M, Di Lorenzo C, Benninga MA. The pediatric Rome IV criteria: what's new? Expert Rev Gastroenterol Hepatol. 2017;11(3):193-201. [PubMed]
- Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017;23(2):151-63. [Crossref] [PubMed] [PMC]
- Zemrani B, Bines JE. Recent insights into trace element deficiencies: causes, recognition and correction. Curr Opin Gastroenterol. 2020;36(2):110-7. [Crossref] [PubMed]
- Cheng S, Mao H, Ruan Y, Wu C, Xu Z, Hu G, et al. Copper changes intestinal microbiota of the cecum and rectum in female mice by 16S rRNA gene sequencing. Biol Trace Elem Res. 2020;193(2):445-55. [Crossref] [PubMed]
- Shin A, Preidis GA, Shulman R, Kashyap PC. The gut microbiome in adult and pediatric functional gastrointestinal disorders. Clin Gastroenterol Hepatol. 2019;17(2):256-74. [Crossref] [PubMed] [PMC]
- Ohkusa T, Koido S, Nishikawa Y, Sato N. Gut microbiota and chronic constipation: a review and update. Front Med (Lausanne). 2019;6:19. [Crossref] [PubMed] [PMC]
- Wang C, Zhang L, Li L. Association between selenium intake with chronic constipation and chronic diarrhea in adults: findings from the national health and nutrition examination survey. Biol Trace Elem Res. 2021;199(9):3205-12. [Crossref] [PubMed]
- Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, et al. Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol. 2018;314(1):G119-G130. [Crossref] [PubMed] [PMC]
- Ferruzza S, Sambuy Y, Rotilio G, Ciriolo MR, Scarino ML. The effect of copper on tight junctional permeability in a human intestinal cell line (Caco-2). Adv Exp Med Biol. 1999;448:215-22. [Crossref] [PubMed]
- Carson SA, Gatlin A, Mazur M. Appendiceal perforation by Copper-7 intrauterine contraceptive device. Am J Obstet Gynecol. 1981;141(5):586-7. [Crossref] [PubMed]
- Tokarnia CH, Döbereiner J, Peixoto PV, Moraes SS. Outbreak of copper poisoning in cattle fed poultry litter. Vet Hum Toxicol. 2000;42(2):92-5. [PubMed]
- Klevay LM. Copper deficiency can change the microbiome of swine. Am J Physiol Endocrinol Metab. 2019;317(1):E183. [Crossref] [PubMed]
- Russo AJ. Decreased plasma myeloperoxidase associated with probiotic therapy in autistic children. Clin Med Insights Pediatr. 2015;9:13-7. [Crossref] [PubMed] [PMC]
- Dai J, Yang X, Yuan Y, Jia Y, Liu G, Lin N, et al. Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. Toxicology. 2020;433-434:152395. [Crossref] [PubMed]
- Willoughby JL, Bowen CN. Zinc deficiency and toxicity in pediatric practice. Curr Opin Pediatr. 2014;26(5):579-84. [Crossref] [PubMed]
- Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of intestinal epithelial homeostasis by zinc transporters. Dig Dis Sci. 2019;64(9):2404-15. [Crossref] [PubMed]
- Adeniyi OS, Akomolafe RO, Ojabo CO, Eru EU, Olaleye SB. Effect of zinc treatment on intestinal motility in experimentally induced diarrhea in rats. Niger J Physiol Sci. 2014;29(1):11-5. [PubMed]
- Xiang R, Tang Q, Chen XQ, Li MY, Yang MX, Yun X, et al. Effects of zinc combined with probiotics on antibiotic-associated diarrhea secondary to childhood pneumonia. J Trop Pediatr. 2019;65(5):421-6. [Crossref] [PubMed]
- Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients. 2015;7(12):9768-84. [Crossref] [PubMed] [PMC]
- Shao Y, Wolf PG, Guo S, Guo Y, Gaskins HR, Zhang B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem. 2017;43:18-26. [Crossref] [PubMed]
- De Flora S, Iltcheva M, Balansky RM. Oral chromium(VI) does not affect the frequency of micronuclei in hematopoietic cells of adult mice and of transplacentally exposed fetuses. Mutat Res. 2006;610(1-2):38-47. [Crossref] [PubMed]
- Starich GH, Blincoe C. Dietary chromium - forms and availabilities. Sci Total Environ. 1983;28:443-54. [Crossref] [PubMed]
- Yao Q, Yang H, Wang X, Wang H. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere. 2019;216:313-23. [Crossref] [PubMed]
- Ducros V. Chromium metabolism. A literature review. Biol Trace Elem Res. 1992;32:65-77. [Crossref] [PubMed]
- Racek J. Chrom jako biogenní prvek [Chromium as an essential element]. Cas Lek Cesk. 2003;142(6):335-9. Czech. [PubMed]
- Ko GT, Chan WB, Chan JC, Tsang LW, Cockram CS. Gastrointestinal symptoms in Chinese patients with Type 2 diabetes mellitus. Diabet Med. 1999;16(8):670-4. [Crossref] [PubMed]
- Horton F, Wright J, Smith L, Hinton PJ, Robertson MD. Increased intestinal permeability to oral chromium (51 Cr) -EDTA in human Type 2 diabetes. Diabet Med. 2014;31(5):559-63. [Crossref] [PubMed]
- van Zuuren EJ, Albusta AY, Fedorowicz Z, Carter B, Pijl H. Selenium supplementation for Hashimoto's thyroiditis. Cochrane Database Syst Rev. 2013;2013(6):CD010223. [Crossref] [PubMed] [PMC]
- Senkal M, Haaker R, Deska T, Hummel T, Steinfort C, Zumtobel V, et al. Early enteral gut feeding with conditionally indispensable pharmaconutrients is metabolically safe and is well tolerated in postoperative cancer patients--a pilot study. Clin Nutr. 2004;23(5):1193-8. [Crossref] [PubMed]
- Guzel O, Uysal U, Arslan N. Efficacy and tolerability of olive oil-based ketogenic diet in children with drug-resistant epilepsy: a single center experience from Turkey. Eur J Paediatr Neurol. 2019;23(1):143-51. [Crossref] [PubMed]
- Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, et al. A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol. 2004;18(1):69-74. [Crossref] [PubMed]
- Wang F, Sun N, Zeng H, Gao Y, Zhang N, Zhang W. Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 2022;13:947655. [Crossref] [PubMed] [PMC]
- Yujiao H, Xinyu T, Xue F, Zhe L, Lin P, Guangliang S, et al. Selenium deficiency increased duodenal permeability and decreased expression of antimicrobial peptides by activating ROS/NF-κB signal pathway in chickens. Biometals. 2023;36(1):137-52. [Crossref] [PubMed]
- de Souza AP, Sieberg R, Li H, Cahill HR, Zhao D, Araújo-Jorge TC, et al. The role of selenium in intestinal motility and morphology in a murine model of Typanosoma cruzi infection. Parasitol Res. 2010;106(6):1293-8. [Crossref] [PubMed] [PMC]
.: Process List