Objective: This study presents an efficient procedure that provides an accurate classification of Electroencephalogram (EEG) signals for the detection of epileptic seizure. Essentially, the proposed procedure hybridizes the linear and nonlinear classifiers with the discrete wavelet transforms (DWT) and principal component analysis (PCA), separately. Material and Methods: To classify EEG signals more accurately, the proposed multi-resolution signal processing technique splits them into the detailed partitions with different window-widths, and then decomposes them into detail and approximation coefficients by means of DWT. Thus, many specific latent features that characterize the nonlinear and dynamical structures in the signals can be evaluated from these coefficients. During the model estimation process with multivariate logistic regression (MLR) and artificial neural networks (ANNs), to control the complexity of model and reduce the dimension of feature matrix, PCA is used. In addition, to quantify the complexity and select the best models, the information criteria are considered for both MLR and ANNs. To improve the classification performance, ANNs are trained by various gradient algorithms as well as considering early stopping and cross-validation techniques. Results: According to analysis results over the benchmark epilepsy data set released by the Department of Epileptology at University of Bonn, the proposed approach is to bring out 99% accuracy ratios for classifying the epileptic signals. Conclusion: This approach not only allows making an efficient analysis of EEG signals for detection of epilepsy, but also provides the best model configurations for ANNs and MLR in terms of reliability and complexity.
Keywords: EEG signal processing; epileptic seizures; discrete wavelet transform; artificial neural networks; multinomial logistic regression; principal component analysis
Amaç: Bu çalışma, epileptik nöbetlerin tesbiti için Elektroensefalogram (EEG) sinyallerini doğru sınıflandıran etkin bir yöntem önermektedir. Esas olarak, bu yöntem lineer ve lineer olmayan sınıflandırıcıları, ayrık dalgacık dönüşümleri (ADD) ve temel bileşenler analizi (TBA) ile hibritleştirmektedir. Gereç ve Yöntemler: Önerilen çoklu-çözünürlüklü sinyal işleme tekniği, EEG sinyallerinin daha doğru sınıflandırılmak için onları farklı bant genişlikli parçalara bölmekte ve bu parçaları ADD yardımıyla ayrıntı (detail) ve yaklaşım (approximate) katsayılarına ayrıştırmaktadır. Böylece, sinyallerin barındırdığı dinamik ve lineer olmayan yapıları karaterize eden birçok gizli özellik, bu katsayılar üzerinden belirlenmektedir. Çokterimli Logistik Regregresyon (ÇLR) ve Yapay Sinir Ağlarıyla (YSA) model kestirim sürecinde, karmaşıklığı kontrol etmek ve veri matrisini indirgemek için TBA kullanılmıştır. Bunun yanısıra, model karmaşıklığının nicelendirilmesi ve en iyi modellerin belirlenmesi için bilgi kriterlerinden yararlanılmıştır. Doğru sınıflandırma performasını arttırmak için YSA'lar erken durdurma ve çapraz geçerlilik teknikleriyle beraber çeşitli gradyan-tabanlı öğrenme algoritmalarıyla eğitilmiştir. Bulgular: Bonn Üniversitesi Epileptoloji bölümünce herkesin kullanımına açılmış epilepsi veri seti üzerinden elde edilen analiz sonuçlarına göre, önerilen yaklaşım epileptik sinyallerin ayrıştırılmasında %99'lara varan doğruluk oranları vermektedir. Sonuç: Bu yaklaşım epilepsinin teşhisi için EEG sinyallerinin etkin bir analizini yapmakla kalmayıp, model güvenilirliği ve karmaşıklığı bakımından da ÇLR ve YSA'lar için en iyi model konfigürasyonlarını sağlamaktadır.
Anahtar Kelimeler: EEG sinyal işleme; epileptik sinyal; ayrık dalgacık dönüşümü; yapay sinir ağları; çokterimli lojistik regresyon; temel bileşenler analizi
- Sharanreddy M, Kulkarni PK. EEG signal classification for epilepsy seizure detection using improved approximate entropy. International Journal of Public Health Science (IJPHS). 2013;2(1):23-32. [Crossref]
- Zupec-Kania BA, Spellman, E. An overview of the ketogenic diet for pediatric epilepsy. Nutr Clin Pract. 2009;23(6):589-96. PMID: 19033218 [Crossref] [PubMed]
- Shoeb A, Guttag J. Application of Machine Learning to Epileptic Seizure Detection. Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel. June 21-24, 2010:975-82.
- Sanei S, Chambers JA. EEG Signal Processing. Chichester, England; Hoboken, NJ: John Wiley & Sons; 2007. p.1-31. [Crossref] [PMC]
- Taywade SA, Raut RD. A review: EEG signal analysis with different methodologies. Proceedings of the International Journal of Computer Applications. India. 2012:29-31.
- Agarwal R, Gotman J, Flanagan D, Rosenblatt B. Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalogr Clin Neurophysiol. 1998;107(1):44-58. PMID: 9743272 [Crossref]
- Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(6 Pt 1):061907. PMID: 11736210 [Crossref] [PubMed]
- Mainardi LT, Bianchi LM, Cerutti S. Biosignal Processing: Principles and Practices. In: Liang H, Bronzino JD, Peterson DR, Raton B. NY: CRC Press; 2013. p.7-6.
- Rosso OA, Figliola A, Creso J, Serrano E. Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings. Med Biol Eng Comput. 2004;42(4):516-23. PMID: 15320461 [Crossref]
- Güler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods. 2005;148(2):113-21. PMID: 16054702 [Crossref] [PubMed]
- Yalcın N, Tezel G, Karakuzu C. Epilepsy diagnosis using artificial neural network learned by PSO. Turk J Elec Eng & Comp Sci. 2015;23:421-32. [Crossref]
- Sharma M, Pachori RB, Acharya UR. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognition Letters. 2017;9(C):172-9. [Crossref]
- Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR. Tunable-Q wavelet transform based multi-scale entropy measure for automated classification of epileptic EEG signals. Appl Sci. 2017;7(4):1-18. [Crossref]
- Bhati D, Sharma M, Pachori RB, Gadre VM. Time-frequency localized three-band biorthogonal wavelet filter bank using semi-definite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digital Signal Processing. 2017;62(C):259-73. [Crossref]
- Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based apen and artificial neural network. Signal, Image and Video Processing (SVIP). 2014;8(7):1323-34. [Crossref]
- Acharya UR, Sree SV, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst. 2011;21(5):403-14. [Crossref] [PubMed]
- Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PC. Application of recurrence quantification analysis for the automated ıdentification of epileptic EEG signals. Int J Neural Syst. 2011;21(3):199-211. PMID: 21656923 [Crossref] [PubMed]
- Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017;89:389-96. PMID: 28869899 [Crossref] [PubMed]
- Akin M, Arserim MA, Kiymik MK, Turkoglu I. A new approach for diagnosing epilepsy by using wavelet transform and neural network. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. İstanbul, Turkey, October 25-28, 2001:2:1596-9.
- Nigam VP, Graupe D. A neural-network-based detection of epilepsy. Neurol Res. 2004;26(1):55-60. PMID: 14977058 [Crossref] [PubMed]
- Güler I, Ubeyli ED. Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction. Exp Syst Appl. 2004;27(3):323-30. [Crossref]
- Patnaik LM, Manyam OK. Epileptic EEG detection using neural networks and post-classification. Comput Methods Programs Biomed. 2008;91(2):100-9. PMID: 18406490 [Crossref] [PubMed]
- Guo L, Rivero D, Dorado J, Rabuñal JR, Pazos A. Automatic epileptic seizure detection in eegs based on line length feature and artificial neural networks. J Neurosci Methods. 2010;191(1):101-9. PMID: 2059503 [Crossref] [PubMed]
- Martis RJ, Acharya UR, Tan JH, Petznick A, Tong L, Chua CK, et al. Application of ıntrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int J Neural Syst. 2013;23(5):1350023. PMID: 23924414 [Crossref] [PubMed]
- Dehuri S, Jagadev AK, Cho SB. Epileptic seizure identification from electroencephalography signal using de-RBFNS ensemble. Procedia Computer Science. 2013;23:84-95. [Crossref]
- Rivero D, Aguiar-Pulido V, Fernandez-Blanco E, Gestal M. Using genetic algorithms for automatic recurrent ANN development: an application to EEG signal classification. International Journal of Data Mining, Modeling and Management (IJDMMM). 2013;5(2):182-91. [Crossref]
- Amorim P, Moraes T, Fazanaroa D, Silvaa J, Pedrini H. Electroencephalogram signal classification based on shearlet and contourlet transforms. Exp Syst Appl. 2017;67(C):140-7. [Crossref]
- Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Exp Syst Appl. 2009;36(2):2027-36. [Crossref]
- Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Exp Syst Appl. 2011;38(11):14314-20. [Crossref]
- Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowledge-Based Systems. 2013;45:147-65. [Crossref]
- Kumari RSS, Jose JP. Seizure detection in EEG using time frequency analysis and SVM. Proceedings of the International Conference on Emerging Trends in Electrical and Computer Technology. Nagercoil, India, March 23-24,2011:626-30.
- Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Exp Syst Appl. 2012;39(1):202-9. [Crossref]
- Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S, et al. Linkage of gut microbiome with cognition in hepatic enceplopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G168-75. PMID: 21940902 [Crossref] [PubMed] [PMC]
- Joshi V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine. 2012;16(5):1135-42. [Crossref] [PubMed]
- Joshi V, Pachori RB, Vijesh A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control. 2014;9:1-5. [Crossref]
- Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods Programs Biomed. 2014;113(2):494-502. PMID: 24377902 [Crossref] [PubMed]
- Fu J, Hou J, Chen L, Wang M, Shen Y, Zhang Z, Bao X. The yeast BDF1 regulates endocytosis via LSP1 under salt stress. Current Microbiology. 2015;70(5):671-8. [Crossref] [PubMed]
- Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of ıntrinsic mode functions. Exp Syst Appl. 2015;42(3):1106-17. [Crossref]
- Pachori RB. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing. 2008:1-5. [Crossref]
- Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK. Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J Biomed Health Inform. 2017;21(4):888-96. PMID: 27416609 [Crossref] [PubMed]
- Sterman MB, MacDonald LR, Stone RK. Biofeedback training of sensorimotor EEG rhythm in man: effect on epilepsy. Epilepsia. 1974;15(3):395-416. PMID: 4527675 [Crossref] [PubMed]
- Pfurtscheller G, Flotzinger D, Neuper C. Differentiation between finger, toe and tongue movement in man based on 40 hz EEG. Electroencephalogr Clin Neurophysiol. 1994;90(6):456-60. PMID: 7515789 [Crossref]
- Ashwal S, Rust R. Child neurology in the 20th century. Pediatr Res. 2003;53(2):345-61. PMID: 12538797 [Crossref] [PubMed]
- Gao RX, Yan R. Wavelets: Theory and Applications for Manufacturing. New York; London: Springer; 2011. p.49-68. [Crossref]
- Meyer-Baese A, Schmid V. Pattern Recognition and Signal Analysis in Medical Imaging. 2nd ed. Oxford; 2014. p.71-111. [Crossref]
- Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure. 2015;26:56-64. PMID: 25799903 [Crossref] [PubMed]
- Chen D, Wan S, Xiang J, Bao FS. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS One. 2017;12(3):e0173138. PMID: 28278203 [Crossref] [PubMed] [PMC]
- Golden RM. Mathematical Methods for Neural Network Analysis and Design. England: The MIT Press; 1996. p. 419.
- Bishop C. Neural Networks for Pattern Recognition. UK: Oxford University Press; 2010. p.1-27.
- Kocadagli O, Asıkgil B. Nonlinear time series forecasting with Bayesian neural networks. Exp Syst Appl. 2014;41:6596-610. [Crossref]
- Akbilgic O, Bozdagan H. A new supervised classification of credit approval data via the hybridized RBF neural network model using information complexity. In: Lausen B, Krolak-Schwerdt S, Böhmer M, eds. Data Science, Learning by Latent Structures, and Knowledge Discovery. Berlin Heidelberg: Springer; 2015. p.13-27. [Crossref]
- Kocadagli O. A Novel Hybrid Learning Algorithm for Full Bayesian Approach of Artificial Neural Networks. Applied Soft Computing. Elsevier; 2015;35:1-958. [Crossref]
- Freitas JFG. Bayesian methods for neural networks. PhD. Thesis, UK:Trinity College University of Cambridge and Cambrige University Engineering Department; 2000.
- Geman S, Bienenstock E, Doursat R. Neural networks and the bias/variance dilemma. Mass Inst Technol. 1992;4(1):1-58. [Crossref]
- Bozdogan H. Akaike's ınformation criterion and recent developments in ınformation complexity. J Math Psychol. 2000;44(1):62-91. PMID: 10733858 [Crossref] [PubMed]
- Møller MF. A. scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 1993;6(4):525-33. [Crossref]
- Soydaner D, Kocadagli O. Artificial neural networks with gradient learning algorithm for credit scoring. Istanbul University Journal of the School of Business Administration. 2015;44(2):3-12.
- Sharma S. Applied Multivariate Techniques. America: John Wiley & Sons, Inc; 1996. p.288.
- Moon TK, Stirling WC. Mathematical Methods and Algorithms for Signal Processing. New Jersey: Prentice Hall; 2000. p.305-20.
- Armañanzas R, Alonso-Nanclares L, Defelipe-Oroquieta J, Kastanauskaite G, de Sola RG, Defelipe J, et al. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. PloS One. 2013;8(4): e62819. PMID: 23646148 [Crossref] [PubMed] [PMC]
- Jennum P, Pickering L, Christensen J, Ibsen R, Kjellberg L. Morbidity and mortality of childhood and adolescent onset epilepsy: a controlled national study. Epilepsy & Behavior. 2017;66:80-5. [Crossref] [PubMed]
- Jeong A, Wong M. Systemic disease manifestations associated with epilepsy in tuberus sclerosis complex. Epilepsia. 2016;57(9):1443-9. PMID: 27417921 [Crossref] [PubMed]
- Procházka A, Jech J, Smith, J. Wavelet transform use in signal processing. Proceedings of the 31st International Conference in Acoustic. Prague, Czech Republic. 1994. p.209-13.
- Daubechies I. Ten Lectures on Wavelets. 2nd ed. Philadelphia: SIAM; 1992. p.109-20. [Crossref] [PubMed]
- Vernekar K, Kumar H, Gangadharan KV. Computational and experimental approach for fault detection of gears. Journal of Vibration Analysis, Measurement and Control. 2014;2(1):16-29.
- Kocadagli O, Langari R. Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations. Exp Syst Appl. 2017;88 (C):419-34. [Crossref]
- Mallat S. A Wavelet Tour of Signal Processing. 2nd ed. San Diego: Academic Press; 1999. p.103-12. [Crossref]
- Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 1989;11(7):674-93. [Crossref]
- Kociolek M, Materka A, Strzelecki, M, Szczypiński P. Discrete Wavelet Transform Derived Features for Digital Image Texture Analysis. Proceedings of the International Conference on Signals and Electronic Systems. Lodz, 18-21 September, 2001:163-8.
- Akansu AN, Serdijn WA, Selesnick IW. Emerging applications of wavelets: a review. Physical Communication. 2010;3(1):11-8. [Crossref]
- Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory. 1990;36(5):961-1005. [Crossref]
- Walker JS. A Primer on Wavelets and Their Scientific Applications. Florida: Chapman & Hall/CRC; 1999. [Crossref]
- Misiti M, Misiti Y, Oppenheim G, Poggi JM. Wavelet Toolbox 4 User?s Guide, 2009. .
- Hotelling H. Analysis of A Complex of Statistical Variables into Principal Components. Journal of Educational Psychology. 1993:24. [Crossref]
- Jolliffe IT. Principal Component Analysis. 2nd ed. New York; Springer; 2002. p.112-8.
- Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity The Lasso and Generalizations. New York: CRC Press; 2016. p.202-12. [Crossref]
- Mehrjoo S, Bashiri M. An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive ındustry case. Journal of Industrial Engineering International. 2013;9:1-12. [Crossref]
- Zaki MJ, Meira W Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. New York: Cambridge University Press; 2014. p.208-21. [Crossref]
- Hladnik A. Image compression and face recognition: two ımage processing applications of principal component analysis. International Circular of Graphic Education and Research. 2013;6:56-61.
- Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed.New York: John Wiley & Sons Inc; 2000. p.7-11. [Crossref] [PubMed]
- James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning with Applications in R. New York: Springer; 2013. p.93-8. [Crossref]
- Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed. 2005;80(3):187-94. PMID: 16219385 [Crossref] [PubMed]
- Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst. 2005;29(6):647-60. PMID: 16235818 [Crossref] [PubMed]
- Ataee P, Avanaki AN, Shariatpanahi HF, Khoee SM. ?Ranking Features of Wavelet-Decomposed EEG Based on Significance in Epileptic Seizure Prediction,? Proceedings of the 14th European Signal Processing Conference. Florence, Italy, September 4-8, 2006. p.1-4.
- Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Exp Syst Appl. 2007;32(4):1084-93. [Crossref]
- Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic Seizure Detection based on Time-Frequency Analysis and Artificial Neural Networks. Comput Intell Neurosci. 2007:80510. PMID: 18301712 [Crossref] [PubMed] [PMC]
- Polat K, Gunes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation (JAMC). 2007;187(2):1017-26. [Crossref]
- Acharya UR, Chua KC, Lim TC, Dorithy, Suri JS. Automatic identification of epileptic EEG signals using nonlinear parameters. J Mech Med Biol. 2009;9(4):539-53. [Crossref]
- Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed. 2009;13(5):703-10. PMID: 19304486 [Crossref] [PubMed]
- Liang SF, Wang HC, Chang WL, Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process. 2010;2010:853434. [Crossref]
- Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2011;35(6):1563-71. PMID: 20703761 [Crossref] [PubMed]
- Orhan U, Hekim M, Ozer M. EEG Signals classification using the K-means clustering and a multilayer perceptron neural network model. Exp Syst Appl. 2011;38:13475-81. [Crossref]
- Iscan Z, Dokur Z, Demiralp T. Classification of electroencephalogram signals with combined time and frequency features. Exp Syst Appl. 2011;38(8):10499-505. [Crossref]
- Yuan Q, Zhou W, Li S, Cai D. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 2011;96(1-2):29-38. PMID: 21616643 [Crossref] [PubMed]
- Mahajan K, Vargantwar MR, Rajput SM. Classification of EEG using PCA, ICA and neural network. International Journal of Engineering and Advanced Technology (IJEAT). 2011;1(1):80-3.
- Gandhi T, Panigrahi BK, Bhatia M, Anand S. Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Exp Syst Appl. 2012;39(4):4055-62. [Crossref]
- Alam SM, Bhuiyan MI. Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform. 2013;17(2):312-8. PMID: 24235109 [Crossref] [PubMed]
- Zainuddin Z, Huong LK, Pauline O. Reliable epileptic seizure detection using an ımproved wavelet neural network. Australas Med J. 2013;6(5):308-14. PMID: 23745153 [Crossref] [PubMed] [PMC]
- Xie S, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput. 2013;51(1-2):49-60. PMID: 23054383 [Crossref] [PubMed]
- Ahammad N, Fathima T, Jospeh P. Detection of epileptic seizure event and onset using EEG. Biomed Res Int. 2014; 2014:450573. PMID: 24616892 [Crossref] [PubMed] [PMC]
- Das AB, Bhuiyan MIH, Alam SS. A Statistical Method for Automatic Detection of Seizure and Epilepsy in The Dual Tree Complex Wavelet Transform Domain. Proceedings of the IEEE In International Conference on Informatics, Electronics and Vision. Dhaka, Bangladesh, May 23-24, 2014:1-6. [Crossref]
- Chen G. Automatic EEG seizure detection using dual-tree complex wavelet-fourier features. Exp Syst Appl. 2014;41(5):2391-4. [Crossref]
- Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS. Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control. 2012;7(4):401-8. [Crossref]
- Xie S, Krishnan S. Dynamic principal component analysis with non-overlapping moving window and its applications to epileptic EEG classification. Sci World J. 2014;2014:419308. [Crossref] [PubMed] [PMC]
- Das AB, Bhuiyan MIH, Alam SS. Classification of EEG signals using normal ınverse gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal, Image and Video Processing (SVIP). 2016;10(2):259-66. [Crossref]
- Li M, Chen W, Zhang T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control. 2017;31:357-65. [Crossref]
- Fu K, Qu J, Chai Y, Zou T. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control. 2015;18:179-85. [Crossref]
.: Process List