Objective: Temporomandibular joint fractures are very common however there is not a consensus on the treatment protocol. As the tendency towards open reduction and internal fixation increase, alternative fixation materials have drawn attention The aim of the present study is to acknowledge if 60% carbon fiber reinforced polyetheretherketone (Cfr-PEEK) material can be used as an alternative for titanium alloys for the temporomandibular joint (TMJ) fracture fixation. Material and Methods: High and low TMJ subcondylar fractures were simulated on a finite element model. Rhombic plate and 2-plate systems were designed in titanium and 60% CfrPEEK. Stress in the fixation materials, bone and the displacement of the fragments were evaluated. Results: For high subcondylar fracture the rhombic plate system presented better results compared to 2- plate system contrary to low subcondylar fracture fixation. Regarding the material choice 60% Cfr-PEEK presented superior results compared to titanium alloys for low subcondylar facture and similar results with titanium alloys for high subcondylar fractures. The displacement of the fragments was lower in 60% Cfr-PEEK models for each fixation system. Conclusion: Cfr-PEEK can be an alternative for titanium alloys for TMJ fracture fixation especially considering its biomechanical properties can be optimized for clinical conditions nevertheless these findings should be supported with further studies for widespread use.
Keywords: PEEK; carbon fiber reinforced-PEEK; temporomandibular joint fracture; condyle fractures; finite element analysis
Amaç: Temporomandibular eklem (TME) kırıkları populasyonda oldukça yaygın olarak görülmesine rağmen tedavi protokolü konusunda bir fikir birliği yoktur. Açık redüksiyon ve internal fiksasyona olan eğilim arttıkça, alternatif fiksasyon malzemeleri de dikkat çekmiştir ve peek materyalinin. Bu çalışmanın amacı, %60 karbon fiber ile güçlendirilmiş polietereterketon [carbon fiber-reinforced polyetheretherketone (Cfr- PEEK)] TME kırık fiksasyonu için titanyum alaşımının alternatifi olarak kullanılıp kullanılamayacağını belirlemektir. Gereç ve Yöntemler: Sonlu elemanlar modelinde yüksek ve düşük seviyeli TME subkondiler kırıkları simüle edildi. Titanyum ve %60 Cfr-PEEK'ten oluşan rombik plaka ve 2 plak sistemi tasarlandı. Fiksasyon malzemelerindeki stres, kemik ve kırık fragman parçalar arasında oluşan yer değiştirme miktarı değerlendirildi. Bulgular: Yüksek seviyeli subkondiler kırık için rombik plaka sistemi, düşük seviyeli subkondiler kırık sabitlemesine kıyasla 2 plak sistemine göre daha iyi sonuçlar gösterdi. Malzeme seçimi açısından, %60 Cfr-PEEK, düşük seviyeli subkondiler kırık için titanyum alaşımlarına kıyasla üstün sonuçlar sunarken, yüksek seviyeli subkondiler kırıklar için titanyum alaşımları ile benzer sonuçlar verdi. Kırık fragman parçaların yer değiştirmesi, her fiksasyon sistemi için %60 Cfr-PEEK modellerinde daha azdı. Sonuç: Cfr-PEEK, özellikle biyomekanik özelliklerinin değiştirilerek klinik koşullar için optimize edilebilir olduğu düşünüldüğünde, TME kırık fiksasyonu için titanyum alaşımlarının bir alternatifi olabilir. Bununla birlikte, bu bulguların yaygın kullanım için daha fazla çalışma ile desteklenmesi gerekmektedir.
Anahtar Kelimeler: PEEK; karbon fiber ile güçlendirilmiş-PEEK; temporomandibular eklem kırık; kondil kırığı; sonlu elemanlar analizi
- Chrcanovic BR, Abreu MH, Freire-Maia B, Souza LN. 1,454 mandibular fractures: a 3-year study in a hospital in Belo Horizonte, Brazil. J Craniomaxillofac Surg. 2012;40(2):116-23. [Crossref] [PubMed]
- Strohl AM, Kellman RM. Current Management of subcondylar fractures of the mandible, including endoscopic repair. Facial Plast Surg Clin North Am. 2017;25(4):577-80. [Crossref] [PubMed]
- Li J, Yang H, Han L. Open versus closed treatment for unilateral mandibular extra-capsular condylar fractures: a meta-analysis. J Craniomaxillofac Surg. 2019;47(7):1110-9. [Crossref] [PubMed]
- Ergezen E, Akdeniz SS. Evaluation of stress distribution of four different fixation systems at high- and low-level subcondylar fractures on a nonhomogenous finite element model. J Oral Maxillofac Surg. 2020;78(9):1596.e1-1596.e12. [Crossref] [PubMed]
- Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60:46-9. [Crossref]
- Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):118. [Crossref] [PubMed]
- Altıparmak N, Polat S, Onat S. Finite element analysis of the biomechanical effects of titanium and Cfr-peek additively manufactured subperiosteal jaw implant (AMSJI) on maxilla. J Stomatol Oral Maxillofac Surg. 2023;124(1S):101290. [Crossref] [PubMed]
- Albogha MH, Mori Y, Takahashi I. Three-dimensional titanium miniplates for fixation of subcondylar mandibular fractures: Comparison of five designs using patient-specific finite element analysis. J Craniomaxillofac Surg. 2018;46(3):391-7. [Crossref] [PubMed]
- Aquilina P, Chamoli U, Parr WC, Clausen PD, Wroe S. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle. Br J Oral Maxillofac Surg. 2013;51(4):326-31. [Crossref] [PubMed]
- Berthaume MA, Dechow PC, Iriarte-Diaz J, Ross CF, Strait DS, Wang Q, et al. Probabilistic finite element analysis of a craniofacial finite element model. J Theor Biol. 2012;300:242-53. [Crossref] [PubMed]
- Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69. [Crossref] [PubMed] [PMC]
- Sawhney R, Brown R, Ducic Y. Condylar fractures. Otolaryngol Clin North Am. 2013;46(5):779-90. [Crossref] [PubMed]
- Erkmen E, Simşek B, Yücel E, Kurt A. Comparison of different fixation methods following sagittal split ramus osteotomies using three-dimensional finite elements analysis. Part 1: advancement surgery-posterior loading. Int J Oral Maxillofac Surg. 2005;34(5):551-8. [Crossref] [PubMed]
- Berhouet J, Collin P, Benkalfate T, Le Du C, Duparc F, Courage O, et al. Massive rotator cuff tears in patients younger than 65 years. Epidemiology and characteristics. Orthop Traumatol Surg Res. 2009;95(4 Suppl 1):S13-8. [Crossref] [PubMed]
- Han X, Yang D, Yang C, Spintzyk S, Scheideler L, Li P, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J Clin Med. 2019;8(2):240. [Crossref] [PubMed] [PMC]
- Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12-9. [Crossref] [PubMed]
- Dickinson AS, Taylor AC, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech. 2012;45(4):719-23. [Crossref] [PubMed]
- Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 2008;29(11):1563-72. [Crossref] [PubMed]
- Baidya KP, Ramakrishna S, Rahman M, Ritchie A. Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl. 2001;15(3):279-89. [Crossref] [PubMed]
- Avci T, Omezli MM, Torul D. Investigation of the biomechanical stability of Cfr-PEEK in the treatment of mandibular angulus fractures by finite element analysis. J Stomatol Oral Maxillofac Surg. 2022;123(6):610-5. [Crossref] [PubMed]
- Herring SW, Liu ZJ. Loading of the temporomandibular joint: anatomical and in vivo evidence from the bones. Cells Tissues Organs. 2001;169(3):193-200. [Crossref] [PubMed]
- Shetty V, Freymiller E, McBrearty D, Caputo AA. Experimental analysis of functional stability of sagittal split ramus osteotomies secured by miniplates and position screws. J Oral Maxillofac Surg. 1996;54(11):1317-24; discussion 1324-6. [Crossref] [PubMed]
- Shetty V, Freymiller E, McBrearty D, Caputo AA. Functional stability of sagittal split ramus osteotomies: effects of positional screw size and placement configuration. J Oral Maxillofac Surg. 1996;54(5):601-9: discussion 609-10. [Crossref] [PubMed]
- Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, et al. Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res. 2014;29(5):1244-57. Erratum in: J Bone Miner Res. 2020;35(11):2303-4. [Crossref] [PubMed]
- Sugiura T, Yamamoto K, Murakami K, Kawakami M, Kang YB, Tsutsumi S, et al. Biomechanical analysis of miniplate osteosynthesis for fractures of the atrophic mandible. J Oral Maxillofac Surg. 2009;67(11):2397-403. [Crossref] [PubMed]
.: Process List