Böbrekler, sıvı-elektrolit ve asit-baz dengesinde, sistemik kan basıncının düzenlenmesinde, kemik mineral metabolizmasında ve eritropoezde merkezi rol oynar. Böbreğin bu fonksiyonlarının değerlendirilmesinde laboratuvar tetkikleri önemli bir yer alır. Bu tetkikler, böbreğin glomerüler ve tübüler fonksiyonlarını değerlendiren testler olarak 2'ye ayrılır. Çocuklarda glomerüler fonksiyonları değerlendirmek için çok sayıda yöntem kullanılmıştır. Bununla birlikte, glomerüler filtrasyon hızı (GFH), hâlen glomerüler fonksiyonunun en iyi göstergesidir. GFH'yi belirlemede en yaygın yöntem ekzojen ve endojen ajanların kullanıldığı klirens ölçüm yöntemidir. Klirens ölçümü için kullanılacak olan ideal bir madde dolaşımda serbestçe bulunmalı, glomerüler bazal membrandan serbestçe filtre olmalı, nefron boyunca sekrete edilmemeli ve geri emilmemeli, sabit hızda endojen üretilmeli ve kolaylıkla ölçülebilir olmalıdır. Klinik uygulamada endojen ajanlar kullanılarak, çeşitli matematiksel yöntemler ile tahmini GFH hesaplamaları da bulunmaktadır. Tübüler fonksiyonların değerlendirilmesi, glomerüler fonksiyonun değerlendirmesinden daha karmaşıktır. İdrar dansitesi, ozmolalitesi ve pH değeri tübüler fonksiyonlar hakkında fikir veren ve rutin olarak kullanılan başlıca laboratuvar parametreleridir. Tübüler fonksiyonların ayrıntılı incelemesi rutin olarak yapılmaz. Renal fosfat kaybı, idrar asidifikasyon defekti veya idrar konsantrasyon yeteneğinde azalma olan durumlarda renal tübüler fonksiyonlar ayrıntılı olarak araştırılır. İlgili tübülün farklı segmentlerine göre farklı fonksiyonlar etkilenebilir. Tübüler fonksiyonların değerlendirilmesi glukoz, fosfat, bikarbonat ve amino asitlerin geri emilimini, solütlerin fraksiyonel atılımını, konsantrasyon ve dilüsyon kapasitesini değerlendiren testleri içerir.
Anahtar Kelimeler: Böbrek hastalıkları; laboratuvar; glomerüler fonksiyonlar; tübüler fonksiyonlar
The kidneys play a central role in the maintenance fluid-electrolyte and acid-base balance, systemic blood pressure, bone and mineral metabolism and erythropoiesis. Laboratory tests are important in evaluating these functions of the kidney. Laboratory tests can be categorized into tests for glomerular and tubular functions. Broad sets of evaluation tools have been used to judge glomerular function in children. Glomerular filtration rate (GFR) is still the best indicator of renal function. The most common measurement method of GFR is clearance methodology, using exogenous and endogenous markers. The ideal substance for the measurement of clearance should be free in the circulation, freely filterable from through the glomerular basement membrane, not secreted and not reabsorbed along the nephron, generated endogenously at a steady rate and easily measurable. An estimation of GFR from endogenous biomarkers by various mathematical equations is also available for clinical use. Assessment of tubular function is more complicated than the measurement of glomerular function. Urine specific gravity, osmolality and pH are main laboratory parameters that are routinely used for evaluation of tubular functions. Detailed evaluation of tubular functions is not routinely performed. Tubular functions are assessed in detail in case of renal phosphate wasting, urine acidification defect or decrease concentration ability. Different functions may be affected with respect to the different segments of tubule involved. Evaluation of tubular functions include tests evaluating reabsorption of glucose, phosphate, bicarbonate and amino acids, fractional excretion of solutes, concentrating and diluting capacity.
Keywords: Kidney diseases; laboratory; glomerular functions; tubular functions
- Fogazzi GB, Verdesca S, Garigali G. Urinalysis: core curriculum 2008. Am J Kidney Dis. 2008;51(6):1052-67.[Crossref] [PubMed]
- Edelmann CM Jr, Barnett HL, Stark H, Boichis H, Soriano JR. A standarized test of renal concentrating capacity in children. Am J Dis Child. 1967;114(6):639-44.[Crossref] [PubMed]
- Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978;13(2):159-65.[Crossref] [PubMed]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1-266.[PubMed]
- Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med. 1983;309(25):1543-6.[Crossref] [PubMed]
- Houser M. Assessment of proteinuria using random urine samples. J Pediatr. 1984;104(6):845-8.[Crossref] [PubMed]
- Abitbol C, Zilleruelo G, Freundlich M, Strauss J. Quantitation of proteinuria with urinary protein/creatinine ratios and random testing with dipsticks in nephrotic children. J Pediatr. 1990;116(2):243-7.[Crossref] [PubMed]
- Assadi FK. Quantitation of microalbuminuria using random urine samples. Pediatr Nephrol. 2002;17(2):107-10.[Crossref] [PubMed]
- Fogazzi GB, Edefonti A, Garigali G, Giani M, Zolin A, Raimondi S, et al. Urine erythrocyte morphology in patients with microscopic haematuria caused by a glomerulopathy. Pediatr Nephrol. 2008;23(7):1093-100.[Crossref] [PubMed]
- Rosner MH, Bolton WK. Renal function testing. Am J Kidney Dis. 2006;47(1):174-83.[Crossref] [PubMed]
- Roald AB, Aukland K, Tenstad O. Tubular absorption of filtered cystatin-C in the rat kidney. Exp Physiol. 2004;89(6):701-7.[Crossref] [PubMed]
- Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416-21.[Crossref] [PubMed]
- Levey AS, Greene T, Schluchter MD, Cleary PA, Teschan PE, Lorenz RA, et al. Glomerular filtration rate measurements in clinical trials. Modification of diet in renal disease study group and the diabetes control and complications trial research group. J Am Soc Nephrol. 1993;4(5):1159-71.[PubMed] [PMC]
- Watt G, Omar F, Brink A, McCulloch M. Laboratory Investigation of the Child with Suspected Renal Disease. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL, eds. Pediatric Nephrology. 7th ed. Heidelberg: Springer; 2016. p.613-36.[Crossref]
- Nilsson-Ehle P, Grubb A. New markers for the determination of GFR: iohexol clearance and cystatin C serum concentration. Kidney Int Suppl. 1994;47:S17-9.[PubMed]
- Schwartz GJ, Mu-oz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629-37.[Crossref] [PubMed] [PMC]
- Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6(2):257-63.[PubMed]
- Durand E, Prigent A. The basics of renal imaging and function studies. Q J Nucl Med. 2002;46(4):249-67.[PubMed]
- Odlind B, Hällgren R, Sohtell M, Lindström B. Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int. 1985;27(1):9-16.[Crossref] [PubMed]
- Guignard JP, Torrado A, Da Cunha O, Gautier E. Glomerular filtration rate in the first three weeks of life. J Pediatr. 1975;87(2):268-72.[Crossref] [PubMed]
- Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20-9. Erratum in: N Engl J Med. 2012;367(7):681. Erratum in: N Engl J Med. 2012;367(21):2060.[Crossref] [PubMed] [PMC]
- Bagga A, Bajpai A, Menon S. Approach to renal tubular disorders. Indian J Pediatr. 2005;72(9):771-6.[Crossref] [PubMed]
- Delaney MP, Price CP, Lamb EJ. Kidney disease. In: Burtis CA, Ashwood ER, Bruns DE, eds. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. London: Elsevier/Saunders; 2012. p.1523-607.[Crossref]
- Fahimi D, Mohajeri S, Hajizadeh N, Madani A, Esfahani ST, Ataei Net al. Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr Nephrol. 2009;24(12):2409-12.[Crossref] [PubMed]
- Srivastava T, Schwaderer A. Diagnosis and management of hypercalciuria in children. Curr Opin Pediatr. 2009;21(2):214-9.[Crossref] [PubMed]
- Alconcher LF, Castro C, Quintana D, Abt N, Moran L, Gonzalez L, et al. Urinary calcium excretion in healthy school children. Pediatr Nephrol. 1997;11(2):186-8.[Crossref] [PubMed]
- Foley KF, Boccuzzi L. Urine calcium: laboratory measurement and clinical utility. Lab Med. 2010;41(11):683-6.[Crossref]
- Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000;11(10):1937-47.[PubMed]
- Bangert SK, Lapsley M. Renal tubular disorders and renal stone disease. In: Marshall W, Bangert SK, eds. Clinical biochemistry-metabolic and clinical aspects. 2nd ed. London: Churchill/Livingston; 2008. p.174-85.
- Singh J, Moghal N, Pearce SH, Cheetham T. The investigation of hypocalcaemia and rickets. Arch Dis Child. 2003;88(5):403-7.[Crossref] [PubMed] [PMC]
- Shaw NJ, Wheeldon J, Brocklebank JT. Indices of intact serum parathyroid hormone and renal excretion of calcium, phosphate, and magnesium. Arch Dis Child. 1990;65(11):1208-11.[Crossref] [PubMed] [PMC]
- Bökenkamp A, Ludwig M. Disorders of the renal proximal tubule. Nephron Physiol. 2011;118(1):p1-6.[Crossref] [PubMed]
- Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5(1):133-41.[Crossref] [PubMed]
- Duran N. Amino acids. In: Blau N, Duran M, Gibson KM, eds. Laboratory guide to the methods in biochemical genetics. 1st ed. Berlin: Springer; 2008. p.53-89.[Crossref] [PubMed]
- Choi MJ, Ziyadeh FN. The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19(3):424-6.[Crossref] [PubMed]
- Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27(12):4273-87.[Crossref] [PubMed] [PMC]
- Escobar L, Mejía N, Gil H, Santos F. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H⁺ excretion. Nefrologia. 2013;33(3):289-96. English, Spanish.[PubMed]
- Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27(1):42-7.[Crossref] [PubMed]
- Halperin ML, Kamel KS, Goldstein MB. Tools to use to diagnose acid-base disorders. In: Halperin ML, Goldstein MB, Kamel KS, eds. Fluid, Electrolyte, and Acid-Base Physiology-a Problem-Based Approach. 4th ed. Philadelphia: Saunders; 2010. p.39-59.[Crossref]
- Stiburkova B, Bleyer AJ. Changes in serum urate and urate excretion with age. Adv Chronic Kidney Dis. 2012;19(6):372-6.[Crossref] [PubMed]
- Stapleton FB, Linshaw MA, Hassanein K, Gruskin AB. Uric acid excretion in normal children. J Pediatr. 1978;92(6):911-4.[Crossref] [PubMed]
- De Santo NG, Di Iorio B, Capasso G, Paduano C, Stamler R, Langman CB, et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (southern Italy). Pediatr Nephrol. 1992;6(2):149-57.[Crossref] [PubMed]
- Norman ME, Feldman NI, Cohn RM, Roth KS, McCurdy DK. Urinary citrate excretion in the diagnosis of distal renal tubular acidosis. J Pediatr. 1978;92(3):394-400.[Crossref] [PubMed]
- Saborio P, Tipton GA, Chan JC. Diabetes insipidus. Pediatr Rev. 2000;21(4):122-9; quiz 129.[Crossref] [PubMed]
- Mishra G, Chandrashekhar SR. Management of diabetes insipidus in children. Indian J Endocrinol Metab. 2011;15 Suppl 3(Suppl3):S180-7.[Crossref] [PubMed] [PMC]
- Endre ZH, Pickering JW, Walker RJ. Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol. 2011;301(4):F697-707.[Crossref] [PubMed]
- Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463-93.[Crossref] [PubMed] [PMC]
.: Process List