Amaç: Atrofiye uğramış mandibular posterior bölgelerde geleneksel yöntemlerle implant uygulanırken, anatomik limitasyonlarla karşılaşılabilinmektedir. Kısa implantlar ve açılı implantlar, atrofik çenelerde ya da alveoler kemik yüksekliğinin anatomik yapılar nedeniyle sınırlı kaldığı durumlarda, ek cerrahi işlemler uygulanmasına gerek kalmadan implant yerleştirilebilmesine olanak tanımaktadır. Bu çalışmada, 3 boyutlu sonlu elemanlar stres analizi yöntemini kullanarak implant uzunluğu, çapı ve yerleştirilme açısının kortikal, spongioz kemik ve implantlarda oluşturduğu streslerin analiz edilip, kıyaslanması amaçlanmıştır. Gereç ve Yöntemler: Mandibular, 1. molar dişin kaybına bağlı olarak atrofiye uğramış mandibula modeli ve 5 farklı implant modeli implant üstü yapılarıyla beraber 3 boyutlu sonlu elemanlar stres analiziyle değerlendirilmek üzere sanal olarak oluşturuldu. Açılı implantların 3,75 mm çap, 10 mm uzunluğa sahip ve dişin uzun aksına 15°, 20°, 25° açı ile yerleştirilecek şekilde, kısa implantların da 4,5 mm çap, 6 mm uzunluk ve 5,0 mm çap, 7,5 mm uzunluğa sahip olacak şekilde modellemesi yapıldı. Her modele 150 N vertikal ve 45° bukkolingual açılı kuvvet uygulandı. Bulgular: Kortikal kemikte oluşan stresler, spongioz kemikte oluşan streslerden daha yüksek değerlerde olmuştur. Oblik kuvvet altında kortikal kemik kısmında en yüksek sıkışma ve gerilme stresi değeri 15° açılı implant modelinde görülürken, en düşük sıkışma ve gerilme stresi değeri 7,5 mm uzunluk ve 5 mm çapa sahip kısa implant modelinde görülmüştür. Sonuç: Tüm modellerde elde edilen sıkışma ve gerilme stres değerleri, kortikal ve spongioz kemiğin sıkışma ve gerilme eşik değerlerinin altında ölçülmüştür. İmplantlarda oluşan Von Mises stres değerleri implantın kırılma direncinin altında ölçülmüştür. Mandibular posterior bölgede kısa implantların açılı implantlara göre daha iyi bir seçenek olabileceği değerlendirilmiştir.
Anahtar Kelimeler: Diş implantları; sonlu eleman analizi; mandibula
Objective: Atrophic ridges in the posterior mandible present serious limitations for conventional implant placement. Short implants and tilted ones allow the placement of the implants into the atrophic jaws or cases that alveolar bone height limited by anatomical structures without additional surgical augmentation procedures. Our aim was to analyze and compare the effects of implant length, diameter and tilting on stress distributions of cortical, cancellous bone and implant body using 3- dimensional finite element stress analysis. Material and Methods: A 3- dimensional finite element stress analysis model of an atrophic mandibular section of bone with missing first molar tooth was developed, and five different implant models with prosthetic components were developed. The standard implant models with 3.75 mm diameter and 10 mm length were placed with 15°, 20°, 25° angulations buccolingually to the long axis of the tooth, while the short implant models with 4.5 mm diameter, 6 mm length and 5 mm diameter, 7.5 mm length respectively were placed perpendicular to the occlusal plane. A vertical load of 150 N and a buccally-oriented (45°) oblique load of 150 N was applied to the crown. Results: The results demonstrated that the principal stresses in the cortical bone were higher than the principal stresses in the spongioz bone. The highest compression and tensile stress values in the cortical bone section under oblique force were observed in the implant model with an angle of 15°, while the lowest compression and tensile stress value was observed in the short implant model with a length of 7.5 mm and diameter of 5 mm. Conclusion: The compressive and stress stress values obtained in all models were below the compressive and tensile threshold values of the cortical and spongios bone. The Von Mises stress values that occur in the implants were below the fracture resistance of the implant. It has been evaluated that short implant application in mandibular posterior region may be a better option than buccolingually tilted implant application.
Keywords: Dental implants; finite element analysis; mandible
- Pancko F, Dyer J, Weisglass S, Kraut RA. Use of tilted implants in treatment of the atrophic posterior mandible: a preliminary report of a novel approach. J Oral Maxillofac Surg. 2010;68(2):407-13. [Crossref] [PubMed]
- Stellingsma C, Vissink A, Meijer HJ, Kuiper C, Raghoebar GM. Implantology and the severely resorbed edentulous mandible. Crit Rev Oral Biol Med. 2004;1;15(4):240-8. [Crossref] [PubMed]
- das Neves FD, Fones D, Bernardes SR, do Prado CJ, Neto AJ. Short implants--an analysis of longitudinal studies. Int J Oral Maxillofac Implants. 2006;21(1):86-93. [PubMed]
- Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res. 2006;17 Suppl 2:35-51. [Crossref] [PubMed]
- Maló P, Rangert B, Nobre M. "All-on-Four" immediate-function concept with Brånemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5 Suppl 1:2-9. [Crossref] [PubMed]
- Calandriello R, Tomatis M. Simplified treatment of the atrophic posterior maxilla via immediate/early function and tilted implants: a prospective 1-year clinical study. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S1-12. [Crossref] [PubMed]
- Pozzi A, Sannino G, Barlattani A. Minimally invasive treatment of the atrophic posterior maxilla: a proof-of-concept prospective study with a follow-up of between 36 and 54 months. J Prosthet Dent. 2012;108(5):286-97. [Crossref] [PubMed]
- Özkan BT, Eskitascioglu G, Cigerim L, Kaplan V. Insertion of buccally tilted and placed implants in edentulous atrophic posterior mandibular sites. Biotechnology & Biotechnological Equipment. 2012;26(4):3163-6. [Crossref]
- Kawasaki T, Komatsu K, Tsuchiya R. Tilted placement of tapered implants using a modified surgical template. J Oral Maxillofac Surg. 2011;69(6):1642-50. [Crossref] [PubMed]
- Flanagan D. Avoiding osseous grafting in the atrophic posterior mandible for implant-supported fixed partial dentures: a report of 2 cases. J Oral Implantol. 2011;37(6):705-11. [Crossref] [PubMed]
- Taşkınsel E, Gümüş HO. Sonlu elemanlar stres analizi ve restoratif diş hekimliğinde kullanımı. [Finite elements stress analysis and its use in restorative dentistry systemic disease]. J Dent Fac Atatürk Uni. 2014;8:131-5. [Crossref]
- Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85(6):585-98. [Crossref] [PubMed]
- Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J prosthet Dent. 2008;100(6):422-31. [Crossref] [PubMed]
- Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J prosthet Dent. 2005;93(3):227-34. [Crossref] [PubMed]
- Katranji A, Misch K, Wang HL. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol. 2007;78(5):874-8. [Crossref] [PubMed]
- Nelson SJ. Wheeler's Dental Anatomy, Physiology and Occlusion. 9th ed. Saunders; 2009.
- Cordaro L, Amadé DS, Cordaro M. Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clin Oral Implants Res. 2002;13(1):103-11. [Crossref] [PubMed]
- Ferrigno N, Laureti M, Fanali S. Inferior alveolar nerve transposition in conjunction with implant placement. Int J Oral Maxillofac Implants. 2005;20(4):610-20. [PubMed]
- Kotsovilis S, Fourmousis I, Karoussis IK, Bamia C. A systematic review and meta-analysis on the effect of implant length on the survival of rough-surface dental implants. J Periodontol. 2009;80(11):1700-18. [Crossref] [PubMed]
- Lai HC, Si MS, Zhuang LF, Shen H, Liu YL, Wismeijer D. Long-term outcomes of short dental implants supporting single crowns in posterior region: a clinical retrospective study of 5-10 years. Clin Oral Implants Res. 2013;24(2):230-7. [Crossref] [PubMed]
- Krekmanov L. Placement of posterior mandibular and maxillary implants in patients with severe bone deficiency: a clinical report of procedure. Int J Oral Maxillofac Implants. 2000;15(5):722-30. [PubMed]
- Oikarinen K, Raustia AM, Hartikainen M. General and local contraindications for endosseal implants--an epidemiological panoramic radiograph study in 65-year-old subjects. Community Dent Oral Epidemiol. 1995;23(2):114-8. [Crossref] [PubMed]
- Griffin TJ, Cheung WS. The use of short, wide implants in posterior areas with reduced bone height: a retrospective investigation. J Prosthet Dent. 2004;92(2):139-44. [Crossref] [PubMed]
- Ozturk A, Potluri A, Vieira AR. Position and course of the mandibular canal in skulls. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(4):453-8. [Crossref] [PubMed]
- Kim HJ, Yu SK, Lee MH, Lee HJ, Kim HJ, Chung CH. Cortical and cancellous bone thickness on the anterior region of alveolar bone in Korean: a study of dentate human cadavers. J Adv Prosthodont. 2012;4(3):146-52. [Crossref]
- Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol. 1998;24(2):80-8. [Crossref] [PubMed]
- Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent. 2004;91(1):20-5. [Crossref] [PubMed]
- Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-50. [Crossref] [PubMed]
- Almeida EO, Rocha EP, Freitas Júnior AC, Anchieta RB, Poveda R, Gupta N, et al. Tilted and short implants supporting fixed prosthesis in an atrophic maxilla: a 3D-FEA biomechanical evaluation. Clin Implant Dent Relat Res. 2015;17 Suppl 1:e332-42. [Crossref] [PubMed]
- Cinar D, Imirzalioglu P. The effect of three different crown heights and two different bone types on implants placed in the posterior maxilla: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2016;31(2):e1-e10. [Crossref] [PubMed]
- Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology. 2003;91(1):31-6. [Crossref] [PubMed]
- Cağlar A, Aydin C, Ozen J, Yilmaz C, Korkmaz T. Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses. Int J Oral Maxillofac Implants. 2006;21(1):36-44. [PubMed]
- Takahashi T, Shimamura I, Sakurai K. Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 Concept. J Prosthodont Res. 2010;54(4):179-84. [Crossref] [PubMed]
- Degerliyurt K, Simsek B, Erkmen E, Eser A. Effects of different fixture geometries on the stress distribution in mandibular peri-implant structures: a 3-dimensional finite element analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 2010;110(2):e1-11. [Crossref]
- Akça K, Iplikçioğlu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants. 2001;16(5):722-30. [PubMed]
.: Process List