İçinde bulunduğumuz sanayi, bilgi, teknoloji ve internet çağı insanlar için büyük konfor ve kolaylıklar sağlamaktadır. Bu konforla gelen yaşam tarzı ve yaşam standartları değişiklikleri, geçtiğimiz dönemlere göre daha uzun yaşam süresi gibi belirgin farklılıklar göstermesine karşılık obezite, diyabet, Alzheimer gibi rahatsızlıkları da beraberinde getirmiştir. Günümüzün gelişmiş sağlık teknolojisinin verdiği avantajlar ile insanlık, yaşam kalitesini artırmanın ve hastalıklardan kaçınmanın yollarını aramaktadır. Bu derleme, bunlardan biri olan ve günümüzde gittikçe popülerleşen aralıklı oruç kavramının tanımını, aralıklı orucun tiplerini, bu kavram ile ilişkili ögeleri, aralıklı orucun çeşitli hastalıkların patofizyolojsine etkisini, yapılan preklinik ve klinik deneyleri ile moleküler ve hücresel düzeyde ele almaktadır. Aralıklı oruç kavramı, birkaç saatten birkaç güne kadar süren ve bu süre zarfında çok az veya hiç kalori tüketilmeyen farklı beslenme rejimlerinin adı olarak tanımlanmaktadır. Bu çalışmada aralıklı oruç, otofaji, sirkadiyen ritim, moleküler mekanizmalar ve hücresel yollar başlıkları altında ele alınmıştır. Aralıklı orucun rolü, kanser, kardiyovasküler hastalıklar, yaşlanma, beyin fonksiyonları, obezite ve diyabet gibi hastalıklar için değerlendirilmiştir. Aralıklı oruç diyetlerine tabi tutulanlarda sağlık göstergelerinin olumlu yönde etkilendiği ve hastalıkları önleme veya tedavi etme bağlamında umut verici sonuçlar sunduğu, moleküler mekanizmalar ile ilişkilendirilerek aktarılmıştır. Aralıklı orucun profilaktik veya terapötik yaklaşımlarda uygun maliyetli ve düşük yan etkili bir destekleyici mekanizma olduğu ortaya konmuştur.
Anahtar Kelimeler: Kalori kısıtlaması; aralıklı oruç; otofaji; sirkadiyen ritim
The industry, information, technology, and internet age that we are in provide great comfort and convenience for people. The lifestyle and living standards of the past century show distinct differences, such as longer life expectancy compared to previous periods. These differences have brought along diseases such as obesity, diabetes, and Alzheimer's disease. With the advantages of today's advanced health technology, humanity has sought ways to increase the quality of life and avoid diseases. This study deals with the definition of the concept of intermittent fasting -which is becoming increasingly popular today- the types of intermittent fasting, the elements associated with this concept, and the effect of intermittent fasting on the pathophysiology of various diseases including clinical, molecular, and cellular levels with the clinical and pre-clinical trials. The concept of intermittent fasting is defined as the name of different types of eating regimes that last from a few hours to a few days, in which little or no calories are consumed. Intermittent fasting has been discussed under the headings of autophagy, circadian rhythm, molecular mechanisms, and cellular pathways. The role of intermittent fasting has been evaluated for diseases such as cancer, cardiovascular diseases, aging, brain functions, obesity, and diabetes. It has been reported that intermittent fasting diets positively affect health indicators that subjected to intermittent fasting diets and offer promising results in the context of preventing or treating diseases, in relation to molecular mechanisms. Intermittent fasting has been shown to be a cost-effective and low sideeffect supportive mechanism in prophylactic or therapeutic approaches.
Keywords: Caloric restriction; intermittent fasting; autophagy; circadian rhythm
- Yücesoy B. Aralıklı oruç ve atletik performans [Intermittent fasting and athletic performance]. Fenerbahçe Üniversitesi Spor Bilim Derg. 2021;1(1):53-65. [Link]
- Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1-2):11-42. [Crossref] [PubMed] [PMC]
- Van Noorden R, Ledford H. Medicine Nobel for research on how cells 'eat themselves'. Nature. 2016;538(7623):18-9. [Crossref] [PubMed]
- Zhang E, Cui W, Lopresti M, Mashek MT, Najt CP, Hu H, et al. Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting. J Lipid Res. 2020;61(3):338-50. [Crossref] [PubMed] [PMC]
- Liu K, Liu B, Heilbronn LK. Intermittent fasting: what questions should we be asking? Physiol Behav. 2020;218:112827. [Crossref] [PubMed]
- Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371-93. [Crossref] [PubMed]
- Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453-8. [Crossref] [PubMed] [PMC]
- Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10(8):466-75. [Crossref] [PubMed] [PMC]
- Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299-313. [Crossref] [PubMed]
- Lu DL, Ma Q, Wang J, Li LY, Han SL, Limbu SM, et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol. 2019;597(6):1585-603. [Crossref] [PubMed] [PMC]
- Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41. [Crossref] [PubMed] [PMC]
- Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 2015;21(6):883-90. [Crossref] [PubMed] [PMC]
- Wan W, You Z, Zhou L, Xu Y, Peng C, Zhou T, et al. mTORC1-regulated and HUWE1-mediated WIPI2 degradation controls autophagy flux. Mol Cell. 2018;72(2):303-15.e6. [Crossref] [PubMed]
- Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem. 2017;292(16):6452-60. [Crossref] [PubMed] [PMC]
- Altintas O, Park S, Lee SJ. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49(2):81-92. [Crossref] [PubMed] [PMC]
- van Heemst D. Insulin, IGF-1 and longevity. Aging Dis. 2010;1(2):147-57. [PubMed] [PMC]
- Singh R, Lakhanpal D, Kumar S, Sharma S, Kataria H, Kaur M, et al. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr). 2012;34(4):917-33. [Crossref] [PubMed] [PMC]
- Jiang Y, Yan F, Feng Z, Lazarovici P, Zheng W. Signaling network of forkhead family of transcription factors (FOXO) in dietary restriction. Cells. 2019;9(1):100. [Crossref] [PubMed] [PMC]
- Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A. 2006;103(20):7901-5. [Crossref] [PubMed] [PMC]
- Hwangbo DS, Lee HY, Abozaid LS, Min KJ. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. 2020;12(4):1194. [Crossref] [PubMed] [PMC]
- North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5(5):224. [Crossref] [PubMed] [PMC]
- Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-30. [Crossref] [PubMed] [PMC]
- Wood JG, Schwer B, Wickremesinghe PC, Hartnett DA, Burhenn L, Garcia M, et al. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2018;115(7):1564-9. [Crossref] [PubMed] [PMC]
- Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 2014;516(7529):112-5. [Crossref] [PubMed] [PMC]
- Cheng Z. The foxO-autophagy axis in health and disease. Trends Endocrinol Metab. 2019;30(9):658-71. [Crossref] [PubMed]
- Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105(9):3374-9. [Crossref] [PubMed] [PMC]
- Esteves AR, Filipe F, Magalhães JD, Silva DF, Cardoso SM. The role of beclin-1 acetylation on autophagic flux in Alzheimer's disease. Mol Neurobiol. 2019;56(8):5654-70. [Crossref] [PubMed]
- Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL, Hahner L, et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun. 2016;7:12723. [Crossref] [PubMed] [PMC]
- Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57(3):456-66. [Crossref] [PubMed]
- Chen L, Wang K, Long A, Jia L, Zhang Y, Deng H, et al. Fasting-induced hormonal regulation of lysosomal function. Cell Res. 2017;27(6):748-63. [Crossref] [PubMed] [PMC]
- Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281-312. [Crossref] [PubMed] [PMC]
- Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015;26(1):22-9. [Crossref] [PubMed] [PMC]
- Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators--a critical appraisal. Cell Metab. 2012;16(6):693-705. [Crossref] [PubMed]
- Byun S, Seok S, Kim YC, Zhang Y, Yau P, Iwamori N, et al. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat Commun. 2020;11(1):807. [Crossref] [PubMed] [PMC]
- O'Flanagan CH, Smith LA, McDonell SB, Hursting SD. When less may be more: calorie restriction and response to cancer therapy. BMC Med. 2017;15(1):106. [Crossref] [PubMed] [PMC]
- Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11-31. Erratum in: Nat Rev Clin Oncol. 2017;14 (2):113. [Crossref] [PubMed]
- Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A. 2008;105(7):2325-30. [Crossref] [PubMed] [PMC]
- Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S, Hayashi H, et al. FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell. 2010;9(3):372-82. [Crossref] [PubMed]
- Demark-Wahnefried W, Nix JW, Hunter GR, Rais-Bahrami S, Desmond RA, Chacko B, et al. Feasibility outcomes of a presurgical randomized controlled trial exploring the impact of caloric restriction and increased physical activity versus a wait-list control on tumor characteristics and circulating biomarkers in men electing prostatectomy for prostate cancer. BMC Cancer. 2016;16:61. Erratum in: BMC Cancer. 2017;17 (1):71. [Crossref] [PubMed] [PMC]
- de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381(26):2541-51. Erratum in: N Engl J Med. 2020;382(3):298. Erratum in: N Engl J Med. 2020;382(10):978. [Crossref] [PubMed]
- Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J. 2012;11:98. [Crossref] [PubMed] [PMC]
- Varady KA, Dam VT, Klempel MC, Horne M, Cruz R, Kroeger CM, et al. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci Rep. 2015;5:7561. [Crossref] [PubMed] [PMC]
- Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. [Crossref] [PubMed] [PMC]
- Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004;101(52):18171-6. [Crossref] [PubMed] [PMC]
- Mattson MP. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med. 2003;139(5 Pt 2):441-4. [Crossref] [PubMed]
- Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci. 2001;56(11):B459-67. [Crossref] [PubMed]
- Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J. 2000;14(12):1825-36. [Crossref] [PubMed]
- Catenacci VA, Pan Z, Ostendorf D, Brannon S, Gozansky WS, Mattson MP, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring). 2016;24(9):1874-83. [Crossref] [PubMed] [PMC]
- Sundfør TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr Metab Cardiovasc Dis. 2018;28(7):698-706. [Crossref] [PubMed]
- Rothschild J, Hoddy KK, Jambazian P, Varady KA. Time-restricted feeding and risk of metabolic disease: a review of human and animal studies. Nutr Rev. 2014;72(5):308-18. [Crossref] [PubMed]
- Halberg N, Henriksen M, Söderhamn N, Stallknecht B, Ploug T, Schjerling P, et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol (1985). 2005;99(6):2128-36. [Crossref] [PubMed]
- Soeters MR, Lammış NM, Dubbelhuis PF, Ackermans M, Jonkers-Schuitema CF, Fliers E, Sauerwein HP, Aerts JM, Serlie MJ. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am J Clin Nutr. 2009;90(5):1244-51. [Crossref] [PubMed]
- Temizhan A, Tandogan I, Dönderici O, Demirbas B. The effects of Ramadan fasting on blood lipid levels. Am J Med. 2000;109(4):341-2. [Crossref] [PubMed]
- Nematy M, Alinezhad-Namaghi M, Rashed MM, Mozhdehifard M, Sajjadi SS, Akhlaghi S, et al. Effects of Ramadan fasting on cardiovascular risk factors: a prospective observational study. Nutr J. 2012;11:69. [Crossref] [PubMed] [PMC]
- Tao Z, Aslam H, Parke J, Sanchez M, Cheng Z. Mechanisms of autophagic responses to altered nutritional status. J Nutr Biochem. 2022;103:108955. [Crossref] [PubMed]
.: Process List