Objective: There is only limited data about 2019-novel coronavirus (2019-nCov) outbreak from Turkey. Here, we aimed to analyse 2019-nCov cases in Turkey from statistical perspective. Material and Methods: Data were obtained from Republic of Turkey Ministery of Health website. The statistical modeling was performed for tests between 27 March and 18 April. The ratios were computed for according to test numbers, number of cases, number of patients in intensive care care, deaths for statistical analysis. An association between related ratios and time was analyzed by using curve estimation approach. Curves were drawn with 95% confidence interval. Results: The ratio of number of cases/number of tests were increased until 7 April and then decreased while the ratio of daily recovered cases/number of daily cases were decreased until that date and then increased. The ratio of deaths/number of cases were increased rapidly initially whereas it later increased more slowly. Although the ratio of number of intubated cases/number of cases and the ratio of number of cases in intensive care unit/number of cases have tendency to decrease in same rate, the ratio of number of deaths/number of cases in intensive care unit has tendency to increase from the beginning of pandemia until this date. Conclusion: The increasing trend of recovered cases, decreasing of deaths, requirement of intensive care unit and intubation are the main satisfactions for Turkey. The statistical modeling used here could shed some light on the control of process. While more cases than modeling estimate can show uncontrolled process, less cases could indicate well-controlled process.
Keywords: Coronavirus; outbreak; statistical perspective; Turkey
Amaç: Dünyada salgın oluşturan 2019-yeni koronavirüse (2019-nCov) ilişkin Türkiye'den kısıtlı veri mevcuttur. Bu çalışmadaki amacımız ülkemizdeki olguların istatistiksel yönden analizidir. Gereç ve Yöntemler: Veriler Türkiye Cumhuriyeti Sağlık Bakanlığı'nın internet sitesinden alınarak, 27 Mart ve 18 Nisan arasındaki testler için istatistiksel modelleme yapıldı. Test sayılarına, vaka sayılarına, yoğun bakımdaki hasta sayısına ve ölüm sayısına göre istatistiksel analizler yapılarak oranlar hesaplandı. İlişkili oranlar ve zaman arasındaki ilişki eğri tahmin yaklaşımı ile değerlendirildi. Eğriler %95 güven aralığı ile çizildi. Bulgular: Vaka/test oranının 7 Nisan'a kadar artış gösterip sonra azaldığı, günlük iyileşen hasta sayısı/günlük vaka sayısı oranının önce azalıp, o tarihten sonra arttığı bulundu. Ölüm/vaka oranının başlangıçta hızlı bir artış hızı gösterirken daha sonra yavaş bir artış hızına ulaştığı saptandı. Pandemi başlangıcından son analiz tarihine kadar entübe vaka/vaka sayısı ile yoğun bakımdaki vaka/vaka sayısı oranlarında aynı hızda bir azalma mevcut olmasına rağmen, ölüm/yoğun bakımdaki vaka oranında aynı hızda artış mevcuttu. Sonuç: İyileşen vakaların artış, ölümlerin, yoğun bakım ünitesindeki vakaların ve entübe hastaların azalma eğiliminde olması Türkiye için olumlu bir gelişme olarak görülebilir. Burada kullanılan istatistiksel modelleme sürecin kontrolüne ışık tutabilir. İlerleyen günlerde, modelin tahmin ettiğinden çok vaka saptanması sürecin kontrol altında olmadığını gösterirken, tahminden daha az vaka olması sürecin kontrol altında olduğunu göstermektedir.
Anahtar Kelimeler: Koronavirüs; salgın; istatistiksel yaklaşım; Türkiye
- Peiris JSM. Coronaviruses. In: Richman DD, Whitley RJ, Hayden FG, eds. Clinical Virology. 4th ed. Washington: ASM Press; 2016. p.52.
- World Health Organization (WHO). Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Dec 31, 2003. https://www.who.int/csr/sars/country/table2004_04_21/en/.
- World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV) November, 2019. http://www.who.int/emergencies/mers-cov/en/.
- Phan T. Novel coronavirus: from discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. [Crossref] [PubMed] [PMC]
- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. [Crossref] [PubMed] [PMC]
- Zhai P, Ding Y, Xia W, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents. 2020;28:105955. [Crossref] [PubMed] [PMC]
- Pan Y, Guan H. Imaging changes in patients with 2019-nCov. Eur Radiol. 2020;6:1-2. [Crossref]
- Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-23. [Crossref]
- Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med. 2020;13;27(2):taaa020. [Crossref] [PubMed] [PMC]
- Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020;55(3):105923. [Crossref] [PubMed] [PMC]
- Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. [Crossref] [PubMed] [PMC]
- T.C. Sağlık Bakanlığı. Türkiye'de Güncel Durum. https://covid19.saglik.gov.tr.
- World Health Organization (WHO). Novel coronavirus-China. Jan 12, 2020. http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. [Crossref]
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. [Crossref] [PubMed] [PMC]
- Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020;133(9):1015-24. [Crossref] [PubMed] [PMC]
- Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69-71. [Crossref] [PubMed]
- Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-nCoV) Infections: challenges for fighting the storm. Eur J Clin Invest. 2020;50(3):e13209. [Crossref] [PubMed] [PMC]
- Wang FS, Zhang C. What to do next to control the 2019- nCoV epidemic? Lancet. 2020;395(10222):391-3 [Crossref]
- Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 epidemiology based on current evidence. J Clin Med. 2020;9(4):E967. [Crossref] [PubMed] [PMC]
- BNO News. Tracking coronavirus: Map, data and timeline. https://bnonews.com/index.php/2020/04/the-latest-coronavirus-cases/.
- Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689-97. [Crossref]
- Wise J. Covid-19: death rate in England and Wales reaches record high because of covid-19. BMJ. 2020;369:m1484. [Crossref] [PubMed]
.: Process List