Alzheimer hastalığı (AH); karakteristik klinik ve patolojik özelliklere sahip, yaşla ilişkili, nörodejeneratif bir hastalıktır. AH'den kaynaklanan ölüm oranı, 2020 yılında koronavirüs hastalığı 2019 pandemisi ile daha da şiddetlenmiştir. En çok bilinen nöropatolojik bulgular; ekstranöronal senil plaklar ve intranöronal nörofibriler yumaklardır. AH, monoaminerjik sistemleri de içeren birçok nöronal yapıyı etkileyen multisistemik bir hastalıktır. AH fizyopatolojisi ile nörotransmitterlerde meydana gelen fonksiyonel değişiklikler yakından ilişkilidir. Nöronal sinapsların kaybı ve nöron ölümü sonucunda asetilkolin gibi birçok nörotransmitterin azaldığı bilinmektedir. AH'de monoaminerjik sistemde temel olarak, dopaminerjik innervasyonu sağlayan substansia nigra çekirdeği, serotonerjik innervasyonu sağlayan dorsal rafe çekirdeği ve noradrenerjik innervasyonu sağlayan lokus seruleus çekirdeği, histaminerjik innervasyonu sağlayan tüberomamiller çekirdek önemli dejenerasyona maruz kalmaktadır. Bu çekirdeklerden projeksiyon alan bölgelerde ilgili nörotransmitterlerin düzeylerinde değişiklikler olmaktadır. Kombine tedavi (bilişsel geliştirici tedaviler, nöropsikiyatrik semptomları tedavi eden ilaçlar, hastalığı modifiye edici tedaviler) Alzheimer hastalarında davranışsal anormallikleri azaltmak ve kognitif fonksiyonları etkili şekilde restore etmek için önemlidir. AH için oluşturulacak tedavi stratejileri, monoaminerjik sistemin arkasındaki moleküler mekanizmayı anlamayı gerektirmektedir. Bu geleneksel derleme ile AH'de monoaminerjik sistemde özellikle dopamin, noradrenalin, serotonin ve histamin mekanizmalarında meydana gelen değişiklikleri ayrıntılı bir şekilde tartışıp, bu konuda bir bakış açısı sunmayı hedefliyoruz. Sonuç olarak monoaminerjik sistemin sinyalizasyon mekanizmasının ve monoaminerjik reseptörlerin etkilerinin daha iyi anlaşılması için insanlarda ve hayvan modellerinde daha çok çalışma yapılması gerekmektedir. Böylece, AH için yeni tedavi stratejilerinin gelişimi hızlanacaktır.
Anahtar Kelimeler: Alzheimer hastalığı; monoaminler; dopamin; noradrenalin; serotonin
Alzheimer's disease (AD) is an age-related, neurodegenerative disease with characteristic clinical and pathological features. The death rate from AD was exacerbated by the coronavirus disease 2019 pandemic in 2020. The most common neuropathological findings are extraneuronal senile plaques and intraneuronal neurofibrillary tangles. AD is a multisystemic disease that affects many neuronal structures, including monoaminergic systems. Functional changes in neurotransmitters are closely related to the pathophysiology of AD. It is known that many neurotransmitters such as acetylcholine decrease as a result of loss of neuronal synapses and neuronal death. In the monoaminergic system, basically, the substantia nigra nucleus providing the dopaminergic innervation, the dorsal raphe nucleus providing the serotonergic innervation, the locus ceruleus nucleus providing the noradrenergic innervation, and the tuberomamillar nucleus providing the histaminergic innervation are exposed to significant degeneration in AD. There are changes in the levels of relevant neurotransmitters in the regions projected from these nuclei. Combined therapy (cognitive enhancing treatments, drugs to treat neuropsychiatric symptoms, disease-modifying therapies) important to reduce behavioral abnormalities and effectively restore cognitive functions in AD patients. Treatment strategies for AD require understanding the molecular mechanism behind the monoaminergic system. With this traditional review, we aim to discuss in detail the changes that occur in the monoaminergic system, especially in dopamine, noradrenaline, serotonin and histamine mechanisms in AD, and present a perspective on this issue. As a result; more studies in humans and animal models are needed to better understand the signaling mechanism of the monoaminergic system and the effects of monoaminergic receptors. Thus, the development of new treatment strategies for AD will accelerate.
Keywords: Alzheimer's disease; monoamines; dopamine; noradrenaline; serotonin
- 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327-406. [Crossref] [PubMed]
- Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-90. [Crossref] [PubMed] [PMC]
- Thies W, Bleiler L. Alzheimer's disease facts and figures. Alzheimers Dement. 2011;7(2):208-44. [PubMed]
- Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol. 2021;197:101895. [Crossref] [PubMed]
- Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: a review. Eur J Med Chem. 2021;216:113320. [Crossref] [PubMed]
- Gültekin M. Alzheimer hastalığı tanısında güncel radyolojik yöntemler. Yener GG, Yılmaz Küsbeci Ö, editörler. Alzheimer Hastalığı. 1. Baskı. Ankara: Türkiye Klinikleri; 2021. p.61-3.
- Chu LW. Alzheimer's disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228-37. [PubMed]
- Ghoweri AO, Gagolewicz P, Frazier HN, Gant JC, Andrew RD, Bennett BM, et al. Neuronal calcium ımaging, excitability, and plasticity changes in the Aldh2-/- mouse model of sporadic Alzheimer's disease. J Alzheimers Dis. 2020;77(4):1623-37. [Crossref] [PubMed] [PMC]
- Wenk GL. Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry. 2003;64 Suppl 9:7-10. [PubMed]
- Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, et al. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci Biobehav Rev. 2013;37(8):1363-79. [Crossref] [PubMed]
- Postupna NO, Keene CD, Latimer C, Sherfield EE, Van Gelder RD, Ojemann JG, et al. Flow cytometry analysis of synaptosomes from post-mortem human brain reveals changes specific to Lewy body and Alzheimer's disease. Lab Invest. 2014;94(10):1161-72. [Crossref] [PubMed] [PMC]
- Szot P. Common factors among Alzheimer's disease, Parkinson's disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsia. 2012;53 Suppl 1:61-6. [Crossref] [PubMed]
- Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's disease: seeking clarity in a time of uncertainty. Front Pharmacol. 2020;11:261. [Crossref] [PubMed] [PMC]
- Martorana A, Koch G. "Is dopamine involved in Alzheimer's disease?". Front Aging Neurosci. 2014;6:252. [Crossref] [PubMed] [PMC]
- Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: monoamines and their derivatives in biological fluids. Exp Gerontol. 2021;152:111452. [Crossref] [PubMed]
- Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107(13):6058-63. [Crossref] [PubMed] [PMC]
- Hirao K, Pontone GM, Smith GS. Molecular imaging of neuropsychiatric symptoms in Alzheimer's and Parkinson's disease. Neurosci Biobehav Rev. 2015;49:157-70. [Crossref] [PubMed] [PMC]
- Hendricksen M, Thomas AJ, Ferrier IN, Ince P, O'Brien JT. Neuropathological study of the dorsal raphe nuclei in late-life depression and Alzheimer's disease with and without depression. Am J Psychiatry. 2004;161(6):1096-102. [Crossref] [PubMed]
- Zubenko GS. Neurobiology of major depression in Alzheimer's disease. Int Psychogeriatr. 2000;12:217-30. [Crossref]
- Parvizi J, Van Hoesen GW, Damasio A. The selective vulnerability of brainstem nuclei to Alzheimer's disease. Ann Neurol. 2001;49(1):53-66. [Crossref] [PubMed]
- Borroni B, Agosti C, Archetti S, Costanzi C, Bonomi S, Ghianda D, et al. Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer disease. Neurosci Lett. 2004;370(2-3):127-9. [Crossref] [PubMed]
- Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, et al. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol. 2012;97(1):1-13. [Crossref] [PubMed] [PMC]
- Storga D, Vrecko K, Birkmayer JG, Reibnegger G. Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci Lett. 1996;203(1):29-32. [Crossref] [PubMed]
- Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun. 2017;8:14727. [Crossref] [PubMed] [PMC]
- Ceyzériat K, Gloria Y, Tsartsalis S, Fossey C, Cailly T, Fabis F, et al. Alterations in dopamine system and in its connectivity with serotonin in a rat model of Alzheimer's disease. Brain Commun. 2021;3(2):fcab029. [Crossref] [PubMed] [PMC]
- Kemppainen N, Ruottinen H, Nâgren K, Rinne JO. PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology. 2000;55(2):205-9. [Crossref] [PubMed]
- Kemppainen N, Laine M, Laakso MP, Kaasinen V, Någren K, Vahlberg T, et al. Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer's disease. Eur J Neurosci. 2003;18(1):149-54. [Crossref] [PubMed]
- Sweet RA, Hamilton RL, Healy MT, Wisniewski SR, Henteleff R, Pollock BG, et al. Alterations of striatal dopamine receptor binding in Alzheimer disease are associated with Lewy body pathology and antemortem psychosis. Arch Neurol. 2001;58(3):466-72. [Crossref] [PubMed]
- Holmes C, Smith H, Ganderton R, Arranz M, Collier D, Powell J, et al. Psychosis and aggression in Alzheimer's disease: the effect of dopamine receptor gene variation. J Neurol Neurosurg Psychiatry. 2001;71(6):777-9. [Crossref] [PubMed] [PMC]
- Meguro K, Yamaguchi S, Itoh M, Fujiwara T, Yamadori A. Striatal dopamine metabolism correlated with frontotemporal glucose utilization in Alzheimer's disease: a double-tracer PET study. Neurology. 1997;49(4):941-5. [Crossref] [PubMed]
- Tanaka Y, Meguro K, Yamaguchi S, Ishii H, Watanuki S, Funaki Y, et al. Decreased striatal D2 receptor densityassociated with severe behavioral abnormality in Alzheimer's disease. Ann Nucl Med. 2003;17(7):567-73. [Crossref] [PubMed]
- Filip V, Kolibás E. Selegiline in the treatment of Alzheimer's disease: a long-term randomized placebo-controlled trial. Czech and Slovak Senile Dementia of Alzheimer Type Study Group. J Psychiatry Neurosci. 1999;24(3):234-43. [PubMed] [PMC]
- Freedman M, Rewilak D, Xerri T, Cohen S, Gordon AS, Shandling M, et al. L-deprenyl in Alzheimer's disease: cognitive and behavioral effects. Neurology. 1998;50(3):660-8. [Crossref] [PubMed]
- Mitchell RA, Herrmann N, Lanctôt KL. The role of dopamine in symptoms and treatment of apathy in Alzheimer's disease. CNS Neurosci Ther. 2011;17(5):411-27. [Crossref] [PubMed] [PMC]
- Herrmann N, Rothenburg LS, Black SE, Ryan M, Liu BA, Busto UE, et al. Methylphenidate for the treatment of apathy in Alzheimer disease: prediction of response using dextroamphetamine challenge. J Clin Psychopharmacol. 2008;28(3):296-301. [Crossref] [PubMed]
- Robertson IH. A noradrenergic theory of cognitive reserve: implications for Alzheimer's disease. Neurobiol Aging. 2013;34(1):298-308. [Crossref] [PubMed]
- Traver S, Salthun-Lassalle B, Marien M, Hirsch EC, Colpaert F, Michel PP. The neurotransmitter noradrenaline rescues septal cholinergic neurons in culture from degeneration caused by low-level oxidative stress. Mol Pharmacol. 2005;67(6):1882-91. [Crossref] [PubMed]
- Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, et al. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem. 2001;79(1):200-10. [Crossref] [PubMed]
- Mather M. Noradrenaline in the aging brain: promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol. 2021;116:108-24. [Crossref] [PubMed] [PMC]
- Szot P. Elevated cerebrospinal fluid norepinephrine in the elderly can link depression and a reduced glymphatic system as risk factors for Alzheimer's disease. Journal of Aging Science. 2016;4:158. [Crossref]
- Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960-9. [Crossref] [PubMed]
- Kalaria RN, Andorn AC, Harik SI. Alterations in adrenergic receptors of frontal cortex and cerebral microvessels in Alzheimer's disease and aging. Prog Clin Biol Res. 1989;317:367-74. [PubMed]
- Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, Unnerstall JR. Adrenergic receptors in aging and Alzheimer's disease: increased beta 2-receptors in prefrontal cortex and hippocampus. J Neurochem. 1989;53(6):1772-81. [Crossref] [PubMed]
- Russo-Neustadt A, Cotman CW. Adrenergic receptors in Alzheimer's disease brain: selective increases in the cerebella of aggressive patients. J Neurosci. 1997;17(14):5573-80. [Crossref] [PubMed] [PMC]
- Kalaria RN, Andorn AC. Adrenergic receptors in aging and Alzheimer's disease: decreased alpha 2-receptors demonstrated by [3H]p-aminoclonidine binding in prefrontal cortex. Neurobiol Aging. 1991;12(2):131-6. [Crossref] [PubMed]
- Cohen HP, Waltz AG, Jacobson RL. Catecholamine content of cerebral tissue after occlusion or manipulation of middle cerebral artery in cats. J Neurosurg. 1975;43(1):32-6. [Crossref] [PubMed]
- Bekar LK, Wei HS, Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab. 2012;32(12):2135-45. [Crossref] [PubMed] [PMC]
- Al-Nuaimi SK, Mackenzie EM, Baker GB. Monoamine oxidase inhibitors and neuroprotection: a review. Am J Ther. 2012;19(6):436-48. [Crossref] [PubMed]
- Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26(4):331-43. [Crossref] [PubMed]
- Meneses A, Hong E. 5-HT1A receptors modulate the consolidation of learning in normal and cognitively impaired rats. Neurobiol Learn Mem. 1999;71(2):207-18. [Crossref] [PubMed]
- Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY. Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2007;95(1-3):158-68. [Crossref] [PubMed]
- Truchot L, Costes N, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. A distinct [18F]MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer's disease. Neuroimage. 2008;40(3):1251-6. [Crossref] [PubMed]
- Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104-10. [Crossref] [PubMed] [PMC]
- Van Meer P, Raber J. Mouse behavioural analysis in systems biology. Biochem J. 2005;389(Pt 3):593-610. [Crossref] [PubMed] [PMC]
- Inagaki N, Toda K, Taniuchi I, Panula P, Yamatodani A, Tohyama M, et al. An analysis of histaminergic efferents of the tuberomammillary nucleus to the medial preoptic area and inferior colliculus of the rat. Exp Brain Res. 1990;80(2):374-80. [Crossref] [PubMed]
- Cacabelos R, Yamatodani A, Niigawa H, Hariguchi S, Tada K, Nishimura T, et al. Brain histamine in Alzheimer's disease. Methods Find Exp Clin Pharmacol. 1989;11(5):353-60. [PubMed]
- Naddafi F, Mirshafiey A. The neglected role of histamine in Alzheimer's disea se. Am J Alzheimers Dis Other Demen. 2013;28(4):327-36. [Crossref] [PubMed]
- Nomura H. [Histamine signaling restores retrieval of forgotten memories]. Nihon Yakurigaku Zasshi. 2021;156(5):292-6. [Crossref] [PubMed]
- Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, et al. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology. 2016;106:135-45. [Crossref] [PubMed]
- Perez SE, Nadeem M, Sadleir KR, Matras J, Kelley CM, Counts SE, et al. Dimebon alters hippocampal amyloid pathology in 3xTg-AD mice. Int J Physiol Pathophysiol Pharmacol. 2012;4(3):115-27. [PubMed] [PMC]
.: Process List