Amaç: Son yıllarda teknolojik gelişmeler sonucu sosyal medya kullanımı, iletişim ve güncel olayların takibi gibi birçok amaçlar için gençler telefonlarından kopamaz hâle gelmiştir. Akıllı telefonlar günlük yaşamımızı kolaylaştırmakla birlikte; fiziksel, sosyal ve kozmetik olarak birçok problemi de beraberinde getirmektedir. Bu çalışmada, akıllı telefon bağımlısı olan ve olmayan genç erişkinlerde postür, üst ekstremite fonksiyonelliği, beden kitle indeksi, boyun ağrısı ve uyku süresinin karşılaştırılması amaçlanmıştır. Gereç ve Yöntemler: Yüz bireyin akıllı telefon bağımlılık düzeyi akıllı telefon bağımlılık ölçeğinin kısa formu ve statik postürleri New York postür analizi ile üst ekstremite fonksiyonelliği kol, omuz ve el sorunları anketi kısa formu ile gece, aktivite ve istirahat boyun ağrıları ise vizüel analog skala ile değerlendirildi. Uyku süreleri bireylere sorularak ve beden kitle indeksleri (BKİ) ise hesaplanarak kaydedildi. Bulgular: Akıllı telefon bağımlısı olan 41 bireyin bağımlılık düzeyi ortalama 40,82±1,10 olarak bulunmuştur. Akıllı telefon bağımlısı olan (n=41) ve olmayan (n=59) bireylerin postür (p=0,710), üst ekstremite fonksiyonelliği (p=0,244), BKİ (p=0,370), boyun ağrısı (pistirahat=0,327, pgece=0,124, paktivite=0,725) ve uyku süreleri (p=0,608) arasında istatistiksel olarak anlamlı fark bulunamamıştır. Sonuç: Bu çalışmada, akıllı telefon bağımlılığının postür, üst ekstremite fonksiyonellikleri, BKİ ile istirahat, aktivite ve gece uykusu sırasındaki boyun ağrıları ile uyku süreleri üzerine etkisinin olmadığı görülmüştür. Gelecekteki çalışmalarda, daha erken yaşlarda telefon kullanımı sırasındaki postürün, telefon kullanım süresinin ve uyku kalitesinin değerlendirildiği araştırmaların yapılabileceğini düşünmekteyiz.
Anahtar Kelimeler: Akıllı telefon; bağımlılık; postür; beden kitle indeksi; boyun ağrısı; uyku
Objective: In recent years as a result of the technological advances, young people have become unable to leave from their phones for many purposes such as social media usage, communication and following up current events. While smartphones make our daily life easier, it brings with it many physical, social and cosmetic problems. In this study, it is aimed to compare posture, upper extremity functionality, body mass index, neck pain and sleep time in young adults with and without smartphone addiction. Material and Methods: Smartphone addiction level of 100 individuals were evaluated with the short form of the smartphone addiction scale, static postures with New York posture analysis, upper extremity functionality with arm, shoulder and hand problems questionnaire short form, and night, activity and resting neck pain with visual analogue scale. Sleep times were recorded by asking individuals and body mass index (BMI) were calculated. Results: The mean addiction level of 41 individuals who are smartphone addicts was found to be 40.82±1.10. No statistically significant difference was found between posture (p=0.710), upper extremity functionality (p=0.244), BMI (p=0.370), neck pain (prest=0.327, pnight=0.124, pactivity=0.725) and sleep times (p=0.608) of individuals with and without smartphone addiction. Conlusion: In this study, it has been observed that smartphone addiction has no effect on posture, upper extremity functionality, body mass index, neck pain during rest, activity and night sleep, and sleep times. In further studies, we think that researches evaluating the posture during the use of the phone, phone usage time and sleep quality at an earlier age can be done.
Keywords: Smartphone; a ddiction; posture; body mass index; neck pain; sleep
- Zheng P, Ni L. Smart Phone and Next Generation Mobile Computing. 1st ed. San Francisco, California: Elsevier; 2010.
- Türkiye İstatistik Kurumu. Erişim tarihi: 14.4.2018.[Link]
- Keskin T, Ergan M, Başkurt F, Başkurt Z. [The relationship between smartphone use and headache in university students]. Adıyaman Üni Sağlık Bilimleri Derg. 2018;4(2):864-73.[Crossref]
- Kwon M, Lee JY, Won WY, Park JW, Min JA, Hahn C, et al. Development and validation of a smartphone addiction scale (SAS). PLoS One. 2013;8(2):e56936.[Crossref] [PubMed] [PMC]
- Kim D, Chung Y, Lee J. Development of smartphone addiction proneness scale for adults: self-report. Korean J Couns. 2012;13(2):629-44.[Crossref]
- Lee YK, Chang CT, Lin Y, Cheng ZH. The dark side of smartphone usage: psychological traits, compulsive behavior and technostress. Comput Hum Behav. 2014;31:373-83.[Crossref]
- Young KS. Internet addiction: symptoms, evaluation and treatment. Innovations in clinical practice: a source book. 1999;17(17):351-2.[Link]
- Griffiths M. Does Internet and computer "addiction" exist? Some case study evidence. CyberPsychol Behav. 2000;3(2):211-8.[Crossref]
- Byun S, Ruffini C, Mills JE, Douglas AC, Niang M, Stepchenkova S, et al. Internet addiction: metasynthesis of 1996-2006 quantitative research. Cyberpsychol Behav. 2009;12(2):203-7.[Crossref] [PubMed]
- Van den Bulck J. Text messaging as a cause of sleep interruption in adolescents, evidence from a cross-sectional study. J Sleep Res. 2003;12(3):263.[Crossref] [PubMed]
- Bianchi A, Phillips JG. Psychological predictors of problem mobile phone use. Cyberpsychol Behav. 2005;8(1):39-51.[Crossref] [PubMed]
- Koivusilta LK, Lintonen TP, Rimpelä AH. Orientations in adolescent use of information and communication technology: a digital divide by sociodemographic background, educational career, and health. Scand J Public Health. 2007;35(1):95-103.[Crossref] [PubMed]
- Augner C, Hacker GW. Associations between problematic mobile phone use and psychological parameters in young adults. Int J Public Health. 2012;57(2):437-41.[Crossref] [PubMed]
- Augner C, Hacker GW. Associations between problematic mobile phone use and psychological parameters in young adults. International Journal of Public Health. 2012;57(2): 437-41.[Crossref] [PubMed]
- Kim H. Exercise rehabilitation for smartphone addiction. J Exerc Rehabil. 2013;31;9(6):500-5.[Crossref] [PubMed] [PMC]
- Ergün A, Erten SF. [Body mass index and waist circumference in estimation of obesity in students]. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2004;57(2):57-61.[Crossref]
- Booth ML, Hunter C, Gore CJ, Bauman A, Owen N. The relationship between body mass index and waist circumference: implications for estimates of the population prevalence of overweight. Int J Obes Relat Metab Disord. 2000;24(8):1058-61.[Crossref] [PubMed]
- Noyan CO, Enez Darçın A, Nurmedov S, Yılmaz O, Dilbaz N. [Validity and reliability of the Turkish version of the smartphone addiction scale-short version among university students]. Anadolu Psikiyatri Dergisi. 2015;16(1):73-82.[Crossref]
- Watson AW, Mac Donncha C. A reliable technique for the assessment of posture: assessment criteria for aspects of posture. J Sports Med Phys Fitness. 2000;40(3):260-70.[PubMed]
- McRoberts LB, Cloud RM, Black CM. Evaluation of the New York posture rating chart for assessing changes in postural alignment in a garment study. Cloth Text Res J. 2013;31(2):81-96.[Crossref]
- Koldas Dogan S, Ay S, Evcik D, Baser O. Adaptation of Turkish version of the questionnaire Quick Disability of the Arm, Shoulder, and Hand (Quick DASH) in patients with carpal tunnel syndrome. Clin Rheumatol. 2011;30(2):185-91.[Crossref] [PubMed]
- Gummesson C, Ward MM, Atroshi I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): validity and reliability based on responses within the full-length DASH. BMC Musculoskelet Disord. 2006;18;7:44.[Crossref] [PubMed] [PMC]
- Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: visual analog scale for pain (VAS Pain), numeric rating scale for pain (NRS Pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and Measure of intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res (Hoboken). 2011;63 Suppl 11:S240-52.[Crossref] [PubMed]
- Hayran M. Mann-Whitney U test. Sağlık Araştırmaları İçin Temel İstatistik. 2. Baskı. Ankara: Omega Araştırma; 2011. p.35-40.
- Kee IK, Byun JS, Jung JK, Choi JK. The presence of altered craniocervical posture and mobility in smartphone-addicted teenagers with temporomandibular disorders. J Phys Ther Sci. 2016;28(2):339-46.[Crossref] [PubMed] [PMC]
- Cochrane ME, Tshabalala MD, Hlatswayo NC, Modipana RM, Makibelo PP, Mashale EP, et al. The short-term effect of smartphone usage on the upper-back postures of university students. Cogent Engin. 2019;6(1):1627-752.[Crossref]
- Liang HW, Hwang YH. Mobile phone use behaviors and postures on public transportation systems. PLoS One. 2016;1;11(2):e0148419.[Crossref] [PubMed] [PMC]
- Trudeau MB, Young JG, Jindrich DL, Dennerlein JT. Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. J Biomech. 2012;21;45(14):2349-54.[Crossref] [PubMed]
- Paine R, Voight ML. The role of the scapula. Int J Sports Phys Ther. 2013;8(5):617-29.[PubMed] [PMC]
- Andersen CH, Andersen LL, Zebis MK, Sjøgaard G. Effect of scapular function training on chronic pain in the neck/shoulder region: a randomized controlled trial. J Occup Rehabil. 2014;24(2):316-24.[Crossref] [PubMed] [PMC]
- Shah PP, Sheth MS. Correlation of smartphone use addiction with text neck syndrome and SMS thumb in physiotherapy students. Int J Community Med Public Health. 2018;5(6):2512-6.[Crossref]
- Choi YS. A study on the smartphone addiction and physical pain in the university students. Biomed Res. 2018;29:3162-8.[Link]
- AlAbdulwahab SS, Kachanathu SJ, AlMotairi MS. Smartphone use addiction can cause neck disability. Musculoskeletal Care. 2017;15(1):10-2.[Crossref] [PubMed]
- İnal EE, Demirci K, Çetintürk A, Akgönül M, Savaş S. Effects of smartphone overuse on hand function, pinch strength, and the median nerve. Muscle Nerve. 2015;52(2):183-8.[Crossref] [PubMed]
- Kim EJ, Kim SY. Correlation between smartphone addiction and eating behaviors of elementary school students in Ansan area. J Korean Soc Food Sci Nutr. 2015;44(7):1007-15.[Crossref]
- Akkaya N, Dogu B, Ünlü Z, Çarl AB, Akkaya S, Tekin L, et al. Ultrasonographic evaluation of the flexor pollicis longus tendon in frequent mobile phone texters. Am J Phys Med Rehabil. 2015;94(6):444-8.[Crossref] [PubMed]
- Berolo S, Wells RP, Amick BC 3rd. Musculoskeletal symptoms among mobile hand-held device users and their relationship to device use: a preliminary study in a Canadian university population. Appl Ergon. 2011;42(2):371-8.[Crossref] [PubMed]
- Eitivipart AC, Viriyarojanakul S, Redhead L. Musculoskeletal disorder and pain associated with smartphone use: a systematic review of biomechanical evidence. Hong Kong Physiother J. 2018;38(2):77-90.[Crossref] [PubMed] [PMC]
- Lee J, Seo K. The comparison of cervical repositioning errors according to smartphone addiction grades. J Phys Ther Sci. 2014;26(4):595-8.[Crossref] [PubMed] [PMC]
.: Process List