Günümüzde göz, saç ve ten rengi, kellik durumu, yaş, yüz morfolojisi, boy uzunluğu gibi gözle görülebilir fiziksel özelliklerin DNA analizleri ile belirlenmesi amacıyla gerçekleştirilen çalışmalar adli bilimlerin ilgi odağı hâline gelmiştir. Elde edilen veriler, şüphelilerin, felaket kurbanlarının veya kayıp kişilerin kimliklendirilmesinde ya da olası şüpheli/kişi havuzunun daraltılmasında adalet sistemine yararlı olabilir. Geleneksel adli DNA analizlerinde sıklıkla kullanılan kısa ardışık tekrar dizileri ile çalışırken karşılaştırma örneklerine gereksinim duyulmaktadır. Ancak şüphelinin bulunmadığı dolayısıyla karşılaştırma örneğinin olmadığı durumlarda, olay yerinden elde edilen biyolojik delillerden mümkün olduğunca fazla bilgi elde etmek için farklı DNA belirteçleri ve analiz yöntemleri kullanılmaya başlanmıştır. Adli bilimlerde tek nükleotid polimorfizm [single nucleotide polymorphism (SNP)] belirteçleri kimliklendirmede, fenotiplemede, nesep ve soy tayininde kullanılmaktadır. Fenotipik özellikleri etkileyen gen polimorfizmlerinden biri olan erkek tipi kellik [male pattern baldness (MPB)] ile ilgili yapılan literatür çalışmaları, bir suçla ilişkili veya kimliklendirmede kullanılmak üzere SNP belirteçlerinin kelliği tahmin etme potansiyeli açışından önemli bilgiler verdiğini göstermektedir. İnsan görünümünün en dikkat çeken özelliklerinden biri olan kellik fenotipinin şüphelilerin olmadığı kriminal vakalarda ve kayıp kişilerin eşkâlini belirlemede kolaylık sağlayarak, soruşturmaya yön vermek açısından oldukça değerli bilgiler sağlayacağı düşünülmektedir. Bu makalede, adli DNA fenotipleme kavramı, MPB fenotipi ve sınıflandırılması, MPB tahmininde kullanılan SNP belirteçleri ve güncel adli uygulama yöntemleri tartışılmıştır.
Anahtar Kelimeler: Erkek tipi kellik; androgenetik alopesi; adli DNA fenotipleme; tek nükleotid polimorfizmi
Today, studies carried out to determine the characteristics related to externally visible characteristics such as eye, hair and skin colour, baldness, age, facial morphology, and height, by DNA analysis, have become the focus of attention of forensic sciences. It is thought that the information obtained as a result of these studies will be very useful for the justice system in identifying unknown suspects, victims of disasters or missing persons or as a screening criterion. Comparison samples are needed when working with short tandem repeats, which are frequently used in traditional forensic DNA analysis. However, in cases where the suspect is not present and therefore there is no comparison sample, different DNA markers and analysis methods have been used to obtain as much information as possible from the biological evidence obtained from the crime scene. In forensic sciences, single nucleotide polymorphism (SNP) markers are used in identification, phenotype determination, lineage and ancestry determination. One of the gene polymorphisms affecting phenotypic traits is male pattern baldness (MPB). Literature studies on MPB, which is one of the gene polymorphisms affecting phenotypic traits, show that SNP markers provide essential information in terms of the potential to predict baldness to be used in a crime or identification. It is thought that the baldness phenotype, which is one of the most striking features of the human appearance, will provide very valuable information in terms of guiding the investigation by facilitating the determination of the description of the persons in criminal cases where there are no suspects and in the disappearance cases. In this article, the concept of forensic phenotyping, MPB phenotype and classification, SNP markers used to predict MPB, and current forensic application methods are discussed.
Keywords: Male pattern baldness; androgenetic alopecia; forensic DNA phenotyping; single nucleotide polymorphism
- Samuel G, Prainsack B. Forensic DNA phenotyping in Europe: views "on the ground" from those who have a professional stake in the technology. New Genet Soc. 2019;38(2):119-41. [Crossref]
- Kayser M. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet. 2015;18:33-48. [Crossref] [PubMed]
- Marano LA, Fridman C. DNA phenotyping: current application in forensic science. Res Reports Forensic Med Sci. 2019;9:1-8. [Crossref]
- Marcińska M, Pośpiech E, Abidi S, Andersen JD, van den Berge M, Carracedo Á, et al; EUROFORGEN-NoE Consortium; Schneider PM, Ballard D, Børsting C, Parson W, Phillips C, Branicki W. Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS One. 2015;10(5):e0127852. [Crossref] [PubMed] [PMC]
- Freire‐Aradas A, Phillips C, Huidobro VL, Carracedo Á. Phenotypic markers for forensic purposes. Forensic Science and Humanitarian Action. 2020:457-72. [Crossref]
- Butler K, Peck M, Hart J, Schanfield M, Podini D. Molecular "eyewitness" : Forensic prediction of phenotype and ancestry. Forensic Sci Int Genet Suppl Ser. 2011;3(1):e498-e9. [Crossref]
- Bulbul O, Phillips C, Argac D, Shahzad MS, Fondevilla M, Acar E, et al. Internal validation of 29 autosomal SNP multiplex using a ABI 310 genetic analyser. Forensic Sci Int Genet Suppl Ser. 2009;2(1):129-30. [Crossref]
- Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med. 2022;88:102351. [Crossref] [PubMed]
- Ragazzo M, Puleri G, Errichiello V, Manzo L, Luzzi L, Potenza S, et al. Evaluation of OpenArray? as a Genotyping method for forensic DNA phenotyping and human identification. Genes (Basel). 2021;12(2):221. [Crossref] [PubMed] [PMC]
- Brockschmidt FF, Hillmer AM, Eigelshoven S, Hanneken S, Heilmann S, Barth S, et al. Fine mapping of the human AR/EDA2R locus in androgenetic alopecia. Br J Dermatol. 2010;162(4):899-903. [Crossref] [PubMed]
- Heilmann-Heimbach S, Hochfeld LM, Henne SK, Nöthen MM. Hormonal regulation in male androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp Dermatol. Published online 2020. [Crossref] [PubMed]
- Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007;39(12):1443-52. [Crossref] [PubMed]
- Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009;18(R1):R9-17. [Crossref] [PubMed]
- Bülbül Ö. Adli bilimlerde SNP markırlarının kullanımı. Filoğlu G, Altunçul H, Bülbül Ö, editörler. Adli Genetik ve Genetik Kimliklendirme. 1. Baskı. Ankara: Seçkin Yayınları; 2021. p.183-206.
- Walsh S, Lindenbergh A, Zuniga SB, Sijen T, de Knijff P, Kayser M, et al. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Sci Int Genet. 2011;5(5):464-71. [Crossref] [PubMed]
- Walsh S, Wollstein A, Liu F, Chakravarthy U, Rahu M, Seland JH, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci Int Genet. 2012;6(3):330-40. [Crossref] [PubMed]
- Grimes EA, Noake PJ, Dixon L, Urquhart A. Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Sci Int. 2001;122(2-3):124-9. [Crossref] [PubMed]
- Tavacı İ, Şimşek SZ, Sapan V, Arslan C, Aşıcıoğlu F, Filoğlu G, et al. Göz ve saç rengini tahmininde kullanılan HIrisPlex panelinin optimizasyonu ve validasyonu [Optimization and Validation of HIrisPlex Panel for Predicting of the Eye and Hair Color]. Turkiye Klin J Forensic Med Forensic Sci. 2021;18(1):10-20. [Crossref]
- Walsh S, Kayser M. A practical guide to the HIrisPlex system: simultaneous prediction of eye and hair color from DNA. Methods Mol Biol. 2016;1420:213-31. [Crossref] [PubMed]
- Chaitanya L, Breslin K, Zu-iga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Sci Int Genet. 2018;35:123-35. [Crossref] [PubMed]
- Tozzo P, Politi C, Delicati A, Gabbin A, Caenazzo L. External visible characteristics prediction through SNPs analysis in the forensic setting: a review. Front Biosci (Landmark Ed). 2021;26(10):828-50. [Crossref] [PubMed]
- Asadi S. The role of mutations on gene AR, in androgenetic alopecia syndrome. Int J Mol Biol Open Access. 2020;5(2):46-9. [Crossref]
- Aydın C. Saç dökülmesine yönelik olarak minoksidilin nanoemülsiyon formülasyonunun geliştirilmesi [Yüksek lisans tezi]. Ankara: Gazi Üniversitesi; 2015. Published online 2015. Erişim tarihi: Şubat 2023. [Link]
- Randall VA. Androgens and hair growth. Dermatol Ther. 2008;21(5):314-28. [Crossref] [PubMed]
- Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets. 2019;23(9):755-71. [Crossref] [PubMed]
- Hamilton JB. Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci. 1951;53(3):708-28. [Crossref] [PubMed]
- Lolli F, Pallotti F, Rossi A, Fortuna MC, Caro G, Lenzi A, et al. Androgenetic alopecia: a review. Endocrine. 2017;57(1):9-17. [Crossref] [PubMed]
- Tai T, Kochhar A. Physiology and medical treatments for alopecia. Facial Plast Surg Clin North Am. 2020;28(2):149-59. [Crossref] [PubMed]
- Kutlubay Z, Bağlam S, Engin B, Serdaroğlu S. Erkeklerde androgenetik alopesi [Male androgenetic alopecia]. Turkderm. 2014;48(1):36-9. [Crossref]
- Hamilton JB. Male hormone stimulation is a prerequisite and incitant in common baldness. J Invest Dermatol. 1942;5(6):473-4. [Crossref]
- Sinclair R. Male pattern androgenetic alopecia. BMJ. 1998;317(7162):865-9. [Crossref] [PubMed] [PMC]
- Norwood OT. Male pattern baldness: classification and incidence. South Med J. 1975;68(11):1359-65. [Crossref] [PubMed]
- Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116(3):452-5. [Crossref] [PubMed]
- Hillmer AM, Hanneken S, Ritzmann S, Becker T, Freudenberg J, Brockschmidt FF, et al. Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am J Hum Genet. 2005;77(1):140-8. [Crossref] [PubMed] [PMC]
- Prodi DA, Pirastu N, Maninchedda G, Sassu A, Picciau A, Palmas MA, et al. EDA2R is associated with androgenetic alopecia. J Invest Dermatol. 2008;128(9):2268-70. [Crossref] [PubMed]
- Richards JB, Yuan X, Geller F, Waterworth D, Bataille V, Glass D, et al. Male-pattern baldness susceptibility locus at 20p11. Nat Genet. 2008;40(11):1282-4. [Crossref] [PubMed] [PMC]
- Cobb JE, Zaloumis SG, Scurrah KJ, Harrap SB, Ellis JA. Evidence for two independent functional variants for androgenetic alopecia around the androgen receptor gene. Exp Dermatol. 2010;19(11):1026-8. [Crossref] [PubMed]
- Li R, Brockschmidt FF, Kiefer AK, Stefansson H, Nyholt DR, Song K, et al. Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012;8(5):e1002746. [Crossref] [PubMed] [PMC]
- Heilmann S, Kiefer AK, Fricker N, Drichel D, Hillmer AM, Herold C, et al. Androgenetic alopecia: identification of four genetic risk loci and evidence for the contribution of WNT signaling to its etiology. J Invest Dermatol. 2013;133(6):1489-96. [Crossref] [PubMed]
- Yap CX, Sidorenko J, Wu Y, Kemper KE, Yang J, Wray NR, et al. Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nat Commun. 2018;9(1):5407. [Crossref] [PubMed] [PMC]
- Dhurat RS, Daruwalla SB. Androgenetic alopecia: Update on etiology. Dermatological Rev. 2021;2(3):115-21. [Crossref]
- Hillmer AM, Brockschmidt FF, Hanneken S, Eigelshoven S, Steffens M, Flaquer A, et al. Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet. 2008;40(11):1279-81. [Crossref] [PubMed]
- Brockschmidt FF, Heilmann S, Ellis JA, Eigelshoven S, Hanneken S, Herold C, et al. Susceptibility variants on chromosome 7p21.1 suggest HDAC9 as a new candidate gene for male-pattern baldness. Br J Dermatol. 2011;165(6):1293-302. [Crossref] [PubMed]
- Hagenaars SP, Hill WD, Harris SE, Ritchie SJ, Davies G, Liewald DC, et al. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13(2):e1006594. [Crossref] [PubMed] [PMC]
- Heilmann-Heimbach S, Herold C, Hochfeld LM, Hillmer AM, Nyholt DR, Hecker J, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694. [Crossref] [PubMed] [PMC]
- Pirastu N, Joshi PK, de Vries PS, Cornelis MC, McKeigue PM, Keum N, et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat Commun. 2017;8(1):1584. Erratum in: Nat Commun. 2018;9(1):2536. [Crossref] [PubMed] [PMC]
- Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting physical appearance from DNA data-towards genomic solutions. Genes (Basel). 2022;13(1):121. [Crossref] [PubMed] [PMC]
- Kwack MH, Jun MS, Sung YK, Kim JC, Kim MK. Ectodysplasin-A2 induces dickkopf 1 expression in human balding dermal papilla cells overexpressing the ectodysplasin A2 receptor. Biochem Biophys Res Commun. 2020;529(3):766-72. [Crossref] [PubMed]
- Hochfeld LM, Bertolini M, Broadley D, Botchkareva NV, Betz RC, Schoch S, et al. Evidence for a functional interaction of WNT10A and EBF1 in male-pattern baldness. PLoS One. 2021;16(9):e0256846. [Crossref] [PubMed] [PMC]
- Kondrakhina IN, Verbenko DA, Zatevalov AM, Kubanov AA, Deryabin DG. SNP variation in male pattern hair loss in Russians with different dihydrotestosterone levels. Meta Gene. 2019;19:219-24. [Crossref]
- Liu F, Hamer MA, Heilmann S, Herold C, Moebus S, Hofman A, et al. Prediction of male-pattern baldness from genotypes. Eur J Hum Genet. 2016;24(6):895-902. [Crossref] [PubMed] [PMC]
- Chen Y, Hysi P, Maj C, Heilmann-Heimbach S, Spector TD, Liu F, et al. Genetic prediction of male pattern baldness based on large independent datasets. Eur J Hum Genet. 2022. [Crossref] [PubMed]
- Desai M. Forensic DNA Analysis : An Assessment of the Emerging Legal Challenges. Int J Law Manag Humanit. 2020;3(3):743-57. [Link]
.: Process List