Objective: To evaluate the three-year results of accelerated corneal collagen crosslinking treatment in keratoconus patients. Material and Methods: Fifty eyes of 50 keratoconus patients were retrospectively reviewed. An accelerated corneal crosslinking treatment procedure was performed on the patients who exposed 9 mW/cm2 irradiance ultraviolet-A with riboflavin for 10 minutes. All cases were evaluated with best corrected visual acuity (BCVA), topographic, tomographic, and topometric parameters, along with corneal densitometry, using the Scheimpflug imaging system (Pentacam® HR, Oculus Inc., Wetzlar, Germany) preoperatively and postoperatively at the sixth month and first, second, and third years. Results: The mean age of the patients was 21.7±5.1 years. BCVA was statistically significantly improved at the sixth month and first, second, and third years when compared to preoperative values (p<0.001, for all). Anterior Kmax values decreased statistically significantly at the postoperative first, second, and third years (p<0.001, for all). The thinnest corneal thickness decreased statistically significantly at the sixth month and first, second, and third years when compared to preoperative values (p<0.001, for all). Anterior elevation values decreased statistically significantly at the sixth month and first, second, and third years when compared to preoperative values (p<0.001, for all). No significant corneal densitometric change was found on the 10-12 mm zone at all layers (p>0.05, for all). The mean vertical coma, spherical aberration, high-order aberration, and total corneal aberration values were significantly decreased at the first, second, and third years when compared to preoperative values (p<0.05, for all). Conclusion: Accelerated corneal crosslinking treatment reduces the risk of keratoconus progression and provides visual, topographic, and aberrometric improvement in some patients. Therefore, accelerated corneal crosslinking treatment is an effective treatment method to prevent progression in progressive keratoconus patients.
Keywords: Keratoconus; corneal topography; riboflavin
Amaç: Keratokonus hastalarında hızlandırılmış korneal kollajen çapraz bağlama (KKÇB) tedavisinin 3 yıllık sonuçlarının değerlendirilmesi amaçlanmıştır. Gereç ve Yöntemler: Progresif keratokonusu olan 50 hastanın 50 gözü retrospektif olarak incelendi. Hastalara 10 dk 9 mW/cm2 ultraviyole-A ile hızlandırılmış KKÇB tedavisi uygulandı. Tüm olguların operayon öncesi ve sonrası 6. ay, 1. yıl, 2. yıl, 3. yıldaki, en iyi düzeltilmiş görme keskinliği (EİDGK), topografik, tomografik, topometrik ve dansitometrik parametreleri (Pentacam® HR, Oculus Inc., Wetzlar, Almanya) değerlendirildi. Bulgular: Çalışmaya katılan hastaların yaş ortalaması 21,7±5,1 yıl idi. Operasyon sonrası 6. ay, 1, 2 ve 3. yıldaki EİDGK değerinde operasyon öncesine göre istatistiksel olarak anlamlı artış saptandı (sırasıyla; p=0,001; p<0,001; p<0,001; p<0,001). Operasyon sonrası 1, 2 ve 3. yıldaki anterior maksimum keratometri değerinde istatistiksel olarak anlamlı azalma saptandı (sırasıyla p<0,001; p<0,001; p<0,001). Tüm takiplerde en ince kornea kalınlığında, operasyon öncesine göre istatistiksel olarak anlamlı azalma olduğu saptandı (sırasıyla p<0,001; p<0,001; p<0,001; p<0,001). Operasyon sonrası 6. ay, 1, 2 ve 3. yıldaki ön elevasyon değerlerinde istatistiksel olarak anlamlı azalma olduğu saptandı (sırasıyla p<0,001; p<0,001; p<0,001; p<0.001). Tüm tabakalarda 10-12 mm zonda korneal dansitometride tedavi sonrası anlamlı değişiklik saptanmadı (Tüm takipler için p>0,05). Ortalama vertikal koma, sferik aberasyon, yüksek sıralı aberasyon, total aberasyon değerlerinde 1, 2 ve 3. yılda istatistiksel olarak anlamlı azalma saptandı (Tüm takipler için p<0,05). Sonuç: Hızlandırılmış KKÇB tedavisi keratokonus progresyonunu durdurmakta ve bazı hastalarda görsel, topografik ve aberometrik düzelme sağlamaktadır. Bu nedenle hızlandırılmış KKÇB, ilerleyici keratokonus hastalarında ilerlemeyi önlemek amacıyla uygulanabilecek etkin bir tedavi yöntemidir.
Anahtar Kelimeler: Keratokonus; kornea topografisi; riboflavin
- Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297-319. [Crossref] [PubMed]
- Davis LJ, Schechtman KB, Wilson BS, Rosenstiel CE, Riley CH, Libassi DP, et al; Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Longitudinal changes in visual acuity in keratoconus. Invest Ophthalmol Vis Sci. 2006;47(2):489-500. [Crossref] [PubMed]
- Tan DT, Por YM. Current treatment options for corneal ectasia. Curr Opin Ophthalmol. 2007;18(4):284-9. [Crossref] [PubMed]
- Tuft SJ, Moodaley LC, Gregory WM, Davison CR, Buckley RJ. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994;101(3):439-47. [Crossref] [PubMed]
- Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620-7. [Crossref] [PubMed]
- Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32(2):279-83. [Crossref] [PubMed]
- Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780-5. [Crossref] [PubMed]
- Wollensak G. Corneal collagen crosslinking: new horizons. Expert Rev Ophthalmol. 2010;5(2):201-15. [Crossref]
- Vinciguerra P, Albè E, Trazza S, Seiler T, Epstein D. Intraoperative and postoperative effects of corneal collagen cross-linking on progressive keratoconus. Arch Ophthalmol. 2009;127(10):1258-65. [Crossref] [PubMed]
- Mrochen M. Current status of accelerated corneal cross-linking. Indian J Ophthalmol. 2013;61(8):428-9. [Crossref] [PubMed] [PMC]
- Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006;17(4):356-60. [Crossref] [PubMed]
- Alnawaiseh M, Rosentreter A, Böhm MR, Eveslage M, Eter N, Zumhagen L. Accelerated (18 mW/cm²) corneal collagen cross-linking for progressive keratoconus. Cornea. 2015;34(11):1427-31. [Crossref] [PubMed]
- Konstantopoulos A, Mehta JS. Conventional versus accelerated collagen cross-linking for keratoconus. Eye Contact Lens. 2015;41(2):65-71. [Crossref] [PubMed]
- Cınar Y, Cingü AK, Türkcü FM, Çınar T, Yüksel H, Özkurt ZG, et al. Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2014;33(3):218-22. [Crossref] [PubMed]
- Cınar Y, Cingü AK, Turkcu FM, Yüksel H, Sahin A, Yıldırım A, et al. Accelerated corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2014;33(2):168-71. [Crossref] [PubMed]
- Chow VW, Chan TC, Yu M, Wong VW, Jhanji V. One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus. Sci Rep. 2015;5:14425. [Crossref] [PubMed] [PMC]
- Shetty R, Nagaraja H, Jayadev C, Pahuja NK, Kurian Kummelil M, Nuijts RM. Accelerated corneal collagen cross-linking in pediatric patients: two-year follow-up results. Biomed Res Int. 2014;2014:894095. [Crossref] [PubMed] [PMC]
- Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97-101. [Crossref] [PubMed] [PMC]
- Madeira C, Vasques A, Beato J, Godinho G, Torrão L, Falcão M, et al. Transepithelial accelerated versus conventional corneal collagen crosslinking in patients with keratoconus: a comparative study. Clin Ophthalmol. 2019;13:445-52. [Crossref] [PubMed] [PMC]
- Ng AL, Chan TC, Cheng AC. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin Exp Ophthalmol. 2016;44(1):8-14. [Crossref] [PubMed]
- Elbaz U, Shen C, Lichtinger A, Zauberman NA, Goldich Y, Chan CC, et al. Accelerated (9-mW/cm2) corneal collagen crosslinking for keratoconus-A 1-year follow-up. Cornea. 2014;33(8):769-73. [Crossref] [PubMed]
- Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013-20. [Crossref] [PubMed]
- Mazzotta C, Traversi C, Baiocchi S, Bagaglia S, Caporossi O, Villano A, et al. Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: ten-year results. cornea. 2018;37(5):560-6. [Crossref] [PubMed]
- Ozer MD, Batur M, Mesen S, Tekin S, Seven E. Long-term results of accelerated corneal cross-linking in adolescent patients with keratoconus. Cornea. 2019 Aug;38(8):992-997. [Crossref] [PubMed]
- Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6. [Crossref] [PubMed] [PMC]
- Hashemi H, Fotouhi A, Miraftab M, Bahrmandy H, Seyedian MA, Amanzadeh K, et al. Short-term comparison of accelerated and standard methods of corneal collagen crosslinking. J Cataract Refract Surg. 2015;41(3):533-40. [Crossref] [PubMed]
- Alnawaiseh M, Rosentreter A, Böhm MR, Eveslage M, Eter N, Zumhagen L. Accelerated (18 mW/cm²) corneal collagen cross-linking for progressive keratoconus. Cornea. 2015;34(11):1427-31. [Crossref] [PubMed]
- Taheri N, Mirzaei M, Mortazavi SZ, Lofti SA, Najafi A. Effects of collagen cross-linking on the corneal optical and topographic characteristics in progressive keratoconus. Adv Ophthalmol Vis Syst. 2015;2(3):78-82. [Crossref]
- Steinberg J, Ahmadiyar M, Rost A, Frings A, Filev F, Katz T, et al. Anterior and posterior corneal changes after crosslinking for keratoconus. Optom Vis Sci. 2014;91(2):178-86. [Crossref] [PubMed]
- Koç M, Uzel MM, Koban Y, Tekin K, Taşlpnar AG, Ylmazbaş P. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin corneas: short-term results. Cornea. 2016;35(3):350-4. [Crossref] [PubMed]
- Anayol MA, Sekeroglu MA, Ceran BB, Dogan M, Gunaydin S, Yilmazbas P. Quantitative assessment of corneal clarity in keratoconus: a case control study of corneal densitometry. Eur J Ophthalmol. 2016;26(1):18-23. [Crossref] [PubMed]
- Alnawaiseh M, Rosentreter A, Böhm MR, Eveslage M, Eter N, Zumhagen L. Accelerated (18 mW/cm²) corneal collagen cross-linking for progressive keratoconus. Cornea. 2015;34(11):1427-31. [Crossref] [PubMed]
- Alnawaiseh M, Rosentreter A, Eveslage M, Eter N, Zumhagen L. Changes in corneal transparency after cross-linking for progressive keratoconus: long-term follow-up. J Refract Surg. 2015;31(9):614-8. [Crossref] [PubMed]
- Koc M, Uzel MM, Tekin K, Kosekahya P, Ozulken K, Yilmazbas P. Effect of preoperative factors on visual acuity, corneal flattening, and corneal haze after accelerated corneal crosslinking. J Cataract Refract Surg. 2016;42(10):1483-9. [Crossref] [PubMed]
- Kocamis SI, Çakmak HB, Ugurlu N, Çagil N. The effect of cross-linking treatment on conus curvature and higher order corneal aberrations in keratoconus. Turk J Ophthalmol. 2014;44:184-9. [Crossref]
- Ghanem RC, Santhiago MR, Berti T, Netto MV, Ghanem VC. Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea. 2014;33(1):43-8. [Crossref] [PubMed]
- Özülken K, Aksoy Aydemir G, Aydemir E, Kızıltoprak H, Yüksel E. Comparison of two different accelerated corneal cross-linking procedure outcomes in patients with keratoconus. Balkan Med J. 2020;37(3):131-7. [Crossref] [PubMed] [PMC]
- Kirgiz A, Eliacik M, Yildirim Y. Different accelerated corneal collagen cross-linking treatment modalities in progressive keratoconus. Eye Vis (Lond). 2019;6:16. [Crossref] [PubMed] [PMC]
.: Process List