Objective: The main goal of this study is to develop a stochastic model for the progression of Chronic Kidney Disease (CKD) into different stages based on estimated Glomerular Filtration Rate (eGFR). Material and Methods: The present study is a retrospective study of 117 patients suffering from CKD during the period March 2006 to October 2016. The prognostic factors such as gender, age, body mass index, diabetes, hypertension, hemoglobin, urea, serum creatinine, albumin and duration of the disease were recorded for each patient. We have applied the continuous time homogeneous multistate model based on Markov processes. The deterioration of disease is continuous in time and the probability of transition from one state to another state depends on the length of time and is independent of time on which transition takes place. Also, Cox proportional hazard model has been used to examine the effects of prognostic factors on the transition rates. Results: The probabilities of staying in the same state in first five years i.e. stage 1, stage2, stage 3, stage 4 and stage 5 are 0.6126, 0.5508, 0.5631, 0.0596 and 1 respectively. The probabilities of moving to the next state are also computed for first five and ten years. The prognostic factors age, hypertension, diabetes, hemoglobin, urea, serum creatinine are significant factors for the progression of CKD into different stages. Conclusions: The mean sojourn times along with p-next probabilities provide more intuitive parametric information of continuous time multistate model based on Markov processes than crude transition intensities.
Keywords: Chronic kidney disease; multi-state markov model; end stage renal disease; glomerular filtration rate; transition intensity
Amaç: Bu çalışmanın amacı tahmin edilen Glomerüler filtrasyon hızına (eGFR) bağlı olarak kronik böbrek hastalığının (CKD) farklı evrelerdeki progresyonu için stokastik model geliştirmektir. Yöntem: Bu çalışma Mart 2006 - Ekim 2016 döneminde CKD geçiren 117 hastaya ait retrospektif bir çalışmadır. Her bir hastaya ait cinsiyet, yaş, beden kitle indeksi, diyabet, hipertansiyon, üre, serum kreatinin, albümin ve hastalık süresi gibi prognostik faktörler kaydedilmiştir. Markov süreçlerine göre sürekli zamanlı homojen çok durumlu model uyguladık. Zamana bağlı olarak hastalık sürekli kötüleşmekte ve durumlar arası geçiş olasılığı geçişin gerçekleştiği zamandan bağımsızdır. Ayrıca geçiş hızlarındaki prognostik faktör etkilerini incelemek için Cox orantısal hazard modeli kullanılmıştır. Bulgular: İlk beş yılda aynı evrede kalma olasılıkları örneğin evre 1, evre 2, evre 3, evre 4 ve evre 5 sırasıyla 0.6126, 0.5508, 0.5631, 0.0596 ve 1'dir. Bir sonraki duruma ilerleme olasılıkları da ilk beş ve on yıl için hesaplanmıştır. CKD progresyonunun farklı evrelerinde yaş, hipertansiyon, diyabet, hemoglobin, üre ve serum kreatinin anlamlı faktörler olarak bulunmuştur. Sonuç: p-sonraki olasılıklarla birlikte ortalama konukluk süreleri, Markov sürecine dayalı sürekli zaman çok durumlu modelinin sezgisel parametrik bilgisini ham geçiş yoğunluğundan daha fazla sağlamaktadır.
Anahtar Kelimeler: Kronik böbrek hastalığı; Çok durumlu Markov modeli; Son dönem böbrek hastalığı; Glomerüler filtrasyon hızı; Geçiş yoğunluğu
- Atkins RC. The epidemiology of chronic kidney disease. Kidney Int Suppl. 2005;(94):S14-8. [Crossref] [PubMed]
- Hailpern SM, Melamed ML, Cohen HW, Hostetter TH. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: Third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol. 2007;18(7):2205-13. [ Crossref] [PubMed]
- Tsai WC, Wu HY, Peng YS, Ko MJ, Wu MS, Hung KY, et al. Risk factors for development and progression of chronic kidney disease: a systematic review and exploratory meta-analysis. Medicine (Baltimore). 2016;95(11):e3013. [ Crossref] [ PubMed] [PMC]
- Varma PP. Prevalence of chronic kidney disease in India-where are we heading? Indian J Nephrol. 2015;25(3):133-5. [PubMed] [PMC]
- Agarwal SK, Srivastava RK. Chronic kidney disease in India: challenges and solutions. Nephron Clin Pract. 2009;111(3):c197-203. [Crossref] [PubMed]
- Varughese S, Abraham G. Chronic kidney disease in India: a clarion call for change. Clin J Am Soc Nephrol. 2018;13(5):802-4. [Crossref] [PubMed]
- Anupama YJ, Uma G. Prevalence of chronic kidney disease among adults in a rural community in South India: results from the kidney disease screening (KIDS) project. Indian J Nephrol. 2014;24(4):214-21. [Crossref] [PubMed]
- Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137-47. [Crossref] [PubMed]
- Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013;3(4):368-71. [Crossref] [PubMed]
- Amin N, Mahmood RT, Asad MJ, Zafar M, Raja AM. Evaluating urea and creatinine levels in chronic renal failure pre and post dialysis: a prospective study. J Cardiovas Dis. 2014;2(2):1-4.
- Hsu CY, Ordoñez JD, Chertow GM, Fan D, McCulloch CE, Go AS. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008;74(1):101-7. [Crossref] [PubMed]
- Jackson CH. Multi-state models for panel data: the msm package for R. J Statist Softw. 2011;38(8):1-29. [Crossref]
- Grover G, Gadpayle AK, Swain PK. A multistate Markov model based on CD4 cell count for HIV/AIDS patients on antiretroviral therapy (ART). Int J Stat Med Res. 2013;2(2):144.
- Chiang CL. The life table and its construction. Introduction to Stochastic Processes in Biostatistics. 1st ed. Hoboken: Wiley; 1968. p.198-214.
- Cassandras CG, Lafortune S. Introduction to Discrete Event Systems. 2nd ed. New York, N.Y: Springer Science & Business Media; 2009. p.772.
- Kalbfleisch JD, Lawless JF. The analysis of panel data under a Markov assumption. J Am Stat Assoc. 1985;80(392):863-71. [Crossref]
- Kay R. A Markov model for analysing cancer markers and disease states in survival studies. Biometrics. 1986;42(4):855-65. [Crossref] [PubMed]
- Cox DR, Miller HD. The Theory of Stochastic Processes. 1st ed. London: Methue; 1965.
- Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review. 2003;45(1):3-49. [Crossref]
- Marshall G, Jones RH. Multi-state models and diabetic retinopathy. Stat Med. 1995;14(18):1975-83. [Crossref] [PubMed]
- Begun A, Icks A, Waldeyer R, Landwehr S, Koch M, Giani G. Identification of a multistate continuous-time non-homogeneous Markov chain model for patients with decreased renal function. Med Decis Making. 2013;33(2):298-306. [Crossref] [PubMed]
- Anwar N, Mahmoud MR. A stochastic model for the progression of chronic kidney disease. IJERA. 2014;4(11):8-19.
.: Process List