Amaç: Son yıllarda 3D yazıcı kullanılarak geçici ve daimi dental restorasyonlar üretilmektedir. Bu çalışmadaki amacımız; 3D yazıcıda daimi rezinlerinden üretilen örneklere farklı yüzey temizliği uygulamasının mikrosertlik ve adeziv siman ile makaslama bağ dayanımı etkisini incelemektir. Gereç ve Yöntemler: Çalışmada SLA ve DLP baskı özelliklerine sahip 3D yazıcılar kullanıldı. 3D yazıcı daimi restorasyon rezinlerinden (Crowntec, Saremco ve Permanent Crown, Formlabs) 44 adet örnek üretildi. Üretimden sonra örneklerin yarısı 3 dk izopropil alkole (%99) batırılarak temizlenirken, diğer yarısı 1 dk izopropil alkollü (%99) gazlı bez ile temizlendi. Örneklerin postpolimerizasyon işlemi üretici önerileri doğrultusunda gerçekleştirildi. Hazırlanan örneklerin mikrosertlik değerleri ölçüldü. Örneklerin yüzeyine kumlama uygulanarak yüzey hazırlıkları yapıldıktan sonra ISO 29022:2013 standartlarında belirtildiği gibi (2,38 mm çapında) şeffaf bir kalıp içerisinde self-adeziv rezin siman (G-CEM ONE, GC) yapıştırıldı. Yapıştırma simanı ile 3D rezin arasındaki yapışma kalitesini belirlemek için makaslama bağ dayanımı testi yapıldı. Çalışmada veriler iki yönlü varyans analizi ve Tukey çoklu karşılaştırma testi kullanılarak değerlendirildi (p<0,05). Bulgular: 3D yazıcıda daimi rezinlerden hazırlanan örneklerin yüzeyi gazlı bez ile temizlendiğinde istatistiksel olarak daha fazla mikrosertlik ve makaslama bağ dayanımı değeri gösterdi (p<0,05). SLA ve DLP 3D yazıcıda hazırlanan örneklerin mikrosertlik ve makaslama bağ dayanımı değerleri arasında istatistiksel olarak anlamlı bir farklılık yoktu (p>0,05). SEM analizinde 3 dk alkolde bekletilen örneklerin yüzeyinde daha fazla boşluk görüldü. Sonuç: 3D yazıcıda üretilen restorasyonların yüzey temizlik prosedürleri mikrosertlik ve makaslama bağ dayanımı değeri üzerinde etkilidir.
Anahtar Kelimeler: 3D baskı; 3D daimi rezin; makaslama bağ dayanımı; mikrosertlik
Objective: In recent years, temporary and permanent dental restoration materials have been produced using 3D printers. Our aim in this study is to examine the effects on microhardness and shear bond strength with adhesive cement after applying different surface cleanings to samples produced from permanent restoration resins in 3D printers. Material and Methods: 3D SLA and DLP printing features was used in the study. 3D-printed permanent resins (Crowntec, Saremco ve Permanent Crown, Formlabs) were produced 44 samples. After production, half of the samples were cleaned by dipping in isopropyl alcohol (99%) for 3 minutes, while the other half was cleaned with isopropyl alcohol (99%) gauze for 1 minute. Post-polymerization of the samples was carried out in accordance with the manufacturer's recommendations. The microhardness values of the prepared samples were measured. After surface preparations were made by sandblasting the surface of the samples, self-adhesive resin cement (G-CEM ONE, GC) was adhered in a transparent mold (2.38 mm in diameter) as specified in ISO 29022:2013 standards. Shear bond strength test was performed to determine the adhesion quality between luting cement and 3D resin. The data in the study were evaluated using the two-way analysis of variance and Tukey post hoc test (p<0.05). Results: When the surface of the samples prepared from permanent resin in the 3D printer was cleaned with gauze, they showed statistically higher microhardness and shear bond strength values (p<0.05). There was no statistically significant difference between the microhardness and shear bond strength values of the samples prepared in SLA and DLP 3D printers (p>0.05). In the SEM analysis, more voids were seen on the surface of the samples that were kept in alcohol for 3 minutes. Conclusion: The surface cleaning procedures of the samples produced by the 3D printer are effective on the microhardness and shear bond strength values.
Keywords: 3D printing; 3D-printed resin; shear bond strength; microhardness
- Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc. 2006;137 Suppl:14S-21S. [Crossref] [PubMed]
- Schweiger J, Edelhoff D, Güth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med. 2021;10(9):2010. [Crossref] [PubMed] [PMC]
- Sampaio CS, Niemann KD, Schweitzer DD, Hirata R, Atria PJ. Microcomputed tomography evaluation of cement film thickness of veneers and crowns made with conventional and 3D printed provisional materials. J Esthet Restor Dent. 2021;33(3):487-95. [Crossref] [PubMed]
- Peng CC, Chung KH, Yau HT, Ramos V Jr. Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent. 2020;123(3):514-22. [Crossref] [PubMed]
- Reeponmaha T, Angwaravong O, Angwarawong T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J Adv Prosthodont. 2020;12(4):218-24. [Crossref] [PubMed] [PMC]
- Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34(2):192-200. [Crossref] [PubMed] [PMC]
- Taormina G, Sciancalepore C, Messori M, Bondioli F. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. J Appl Biomater Funct Mater. 2018;16(3):151-60. [Crossref] [PubMed]
- Mayer J, Reymus M, Wiedenmann F, Edelhoff D, Hickel R, Stawarczyk B. Temporary 3D printed fixed dental prosthesis materials: Impact of post printing cleaning methods on degree of conversion as well as surface and mechanical properties. Int J Prosthodont. 2021;34(6):784-95. [Crossref] [PubMed]
- Reymus M, Lümkemann N, Stawarczyk B. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent. 2019;22(3):231-7. [PubMed]
- Loomans BA, Mesko ME, Moraes RR, Ruben J, Bronkhorst EM, Pereira-Cenci T, et al. Effect of different surface treatment techniques on the repair strength of indirect composites. J Dent. 2017;59:18-25. [Crossref] [PubMed]
- Güngör MB, Nemli SK, Bal BT, Ünver S, Doğan A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J Adv Prosthodont. 2016;8(4):259-66. [Crossref] [PubMed] [PMC]
- Park SJ, Lee JS. Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base. J Adv Prosthodont. 2022;14(4):262-72. [Crossref] [PubMed] [PMC]
- Araújo PHH, Sayer C, Giudici R, Poço JGR. Techniques for reducing residual monomer content in polymers: a review. Polym. Eng. Sci. 2004;42(7):1442-68. [Crossref]
- Leber AP. Human exposures to monomers resulting from consumer contact with polymers. Chem Biol Interact. 2001;135-136:215-20. [Crossref] [PubMed]
- Ponting DJ, Ortega MA, Niklasson IB, Karlsson I, Seifert T, Stéen J, et al. Development of new epoxy resin monomers - a delicate balance between skin allergy and polymerization properties. Chem Res Toxicol. 2019;32(1):57-66. [Crossref] [PubMed]
- Görukmez E, Sen Yilmaz B, Ramoglu SI. Is a single rinse effective on evacuating the residual monomers after orthodontic bonding? An in vivo study. Bezmiâlem Sci. 2021;9(2):127-33. [Crossref]
- Hwangbo NK, Nam NE, Choi JH, Kim JE. Effects of the washing time and washing solution on the biocompatibility and mechanical properties of 3D printed dental resin materials. Polymers (Basel). 2021;13(24):4410. [Crossref] [PubMed] [PMC]
- Mayer J, Stawarczyk B, Vogt K, Hickel R, Edelhoff D, Reymus M. Influence of cleaning methods after 3D printing on two-body wear and fracture load of resin-based temporary crown and bridge material. Clin Oral Investig. 2021;25(10):5987-96. [Crossref] [PubMed]
- Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent. 2015;43(2):209-18. [Crossref] [PubMed]
- Deepa CS, Krishnan VK. Effect of resin matrix ratio, storage medium, and time upon the physical properties of a radiopaque dental composite. J Biomater Appl. 2000;14(3):296-315. [Crossref] [PubMed]
- Asmussen E, Peutzfeldt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res. 2001;80(6):1570-3. [Crossref] [PubMed]
- Jin G, Gu H, Jang M, Bayarsaikhan E, Lim JH, Shim JS, Lee KW, Kim JE. Influence of postwashing process on the elution of residual monomers, degree of conversion, and mechanical properties of a 3D printed crown and bridge materials. Dent Mater. 2022;38(11):1812-25. [Crossref] [PubMed]
- Sonkaya E, Bek Kürklü ZG. Effect of different surface treatments on tensile bond strength to repair of 3D permanent resin with composite: in vitro study. Turkiye Klinikleri J Dental Sci. 2023;29(4):589-56. [Crossref]
- Lankes V, Reymus M, Liebermann A, Stawarczyk B. Bond strength between temporary 3D printable resin and conventional resin composite: influence of cleaning methods and air-abrasion parameters. Clin Oral Investig. 2023;27(1):31-43. [Crossref] [PubMed] [PMC]
.: Process List