Amaç: Daimi 3D baskı reçinesi ile daimi restorasyonlar yapılması oldukça yaygınlaşmıştır, ancak tamir edilebilirliği henüz araştırılmamıştır. Bu çalışmada, daimi reçine blokların yaşlandırma sonrası farklı ağız içi yüzey işlemleri uygulanarak kompozit ile onarımında gerilme dayanımlarının karşılaştırılmasını amaçlamıştır. Gereç ve Yöntemler: Daimi reçine (Formlabs, UT, ABD) kullanılarak 35 adet küp yapıldı. On bin termal siklusta yaşlandırıldı. Numuneler, aşağıdaki yüzey işlemlerine göre 7 gruba ayrıldı: A) Negatif kontrol (hiçbir yüzey işlemi uygulanmadı), B) Pozitif kontrol, C) Fosforik asit, D) Hidroflorik asit, E) Kumlama, F) Er, Cr; YSGG lazer ve G) Frezle pürüzlendirme. A grubu dışındaki tüm örneklere multi-primer ve universal bond uygulandı ve kompozit rezinle tamir edildi. 1×1×12 mm boyutlarında çubuklar kesildi ve mikrogerilim testi uygulandı (n=12). Kopma modları stereomikroskop ile değerlendirildi. Yüzey işlemlerinden sonra her gruptan 2 adet küpün yüzey topografyası, taramalı elektron mikroskobu ile değerlendirildi. Veriler, one way ANOVA ve Duncan testi ile analiz edildi. Bulgular: Negatif kontrol grubu, lazer ve kumlama gruplarına göre önemli ölçüde daha düşük bir mikrogerilim bağlanma gücüne ulaştı (p<0,05). Pozitif kontrol grubunun bağlanma dayanımı, diğer deney gruplarından anlamlı bir farklılık göstermedi (p=0,374). Sonuç: Daimi 3D reçinenin kompozitle tamirinde farklı yüzey işlemleri uygulanması istatistiksel olarak anlamlı bir fark göstermedi. 3D daimi restorasyonların minör onarımlarının kompozit rezin ile yapılabileceği sonucuna varılabilir.
Anahtar Kelimeler: Kompozit rezin; diş restorasyonu; 3D daimi reçine; mikrogerilme dayanımı; restorasyon onarımı
Objective: The repairability of 3D permanent resin has not yet been investigated. This study aimed to compare the repair bond strength of permanent resin blocks with composite by applying different intraoral surface treatments after aging in water. Material and Methods: Permanent resin (Formlabs, UT, USA) was used to construct 35 cubes aged through 10,000 thermal cycles. The samples were allocated into 7 groups according to the following surface treatments: A) Negative control (no surface treatment applied), B) Positive control, C) Phosphoric acid, D) Hydrofluoric acid, E) Sandblasting, F) Er, Cr; YSGG laser and G) Bur grinding. Multiprimer and universal bond were applied to all specimens except group A and repaired with composite resin. Microtensile testing of 1×1×12 mm sticks was performed using a universal testing machine and the failure modes were evaluated by stereomicroscope (n=12). The surface topography of 2 permanent resin cubes after surface treatments was assessed by scanning electron microscopy. Data were analyzed with one way ANOVA and Duncan test. Results: The negative control group reached a significantly lower micro tensile bond strength than the laser and sandblasting groups (p<0.05). The repair bond strength of the positive control group didn't differ significantly from that of the other experimental groups (p=0.374). Conclusion: The application of different surface treatments in the repair of 3D permanent resin with composite did not show a statistically significant difference. It can be concluded that minor repairs of 3D-printed permanent restorations can be made with composite resin.
Keywords: Composite resins; dental restoration; 3D permanent resin; microtensile strength; restoration repair
- Panayi NC, Tsolakis AI. In-house computer-aided design and 3-dimensional printing of customized orthodontic brackets using hybrid ceramic resin: is it the time for the orthodontist to take over? AJO-DO Clinical Companion. 2021;1(3):187-93. [Crossref]
- Pillai S, Upadhyay A, Khayambashi P, Farooq I, Sabri H, Tarar M, et al. Dental 3D-printing: transferring art from the laboratories to the clinics. Polymers (Basel). 2021;13(1):157. [Crossref] [PubMed] [PMC]
- Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers (Basel). 2021;13(4):598. [Crossref] [PubMed] [PMC]
- Kessler A, Hickel R, Reymus M. 3D Printing in dentistry-state of the art. Oper Dent. 2020;45(1):30-40. [Crossref] [PubMed]
- Sismanoglu S, Tugce Gurcan A, Yildirim‐Bilmez Z, Gumustas B. Mechanical properties and repair bond strength of polymer‐based CAD/CAM restorative materials. International Journal of Applied Ceramic Technology. 2021;18(2):312-8. [Crossref]
- Üstün Ö, Büyükhatipoğlu IK, Seçilmiş A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont. 2018;27(8):748-54. [Crossref] [PubMed]
- Duzyol M, Sagsoz O, Polat Sagsoz N, Akgul N, Yildiz M. The effect of surface treatments on the bond strength between CAD/CAM blocks and composite resin. J Prosthodont. 2016;25(6):466-71. [Crossref] [PubMed]
- Tekçe N, Tuncer S, Demirci M, Kara D, Baydemir C. Microtensile bond strength of CAD/CAM resin blocks to dual-cure adhesive cement: the effect of different sandblasting procedures. J Prosthodont. 2019;28(2):e485-90. [Crossref] [PubMed]
- Loomans BA, Mesko ME, Moraes RR, Ruben J, Bronkhorst EM, Pereira-Cenci T, et al. Effect of different surface treatment techniques on the repair strength of indirect composites. J Dent. 2017;59:18-25. [Crossref] [PubMed]
- Güngör MB, Nemli SK, Bal BT, Ünver S, Doğan A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J Adv Prosthodont. 2016;8(4):259-66. [Crossref] [PubMed] [PMC]
- Bayraktar Y, Arslan M, Demirtag Z. Repair bond strength and surface topography of resin-ceramic and ceramic restorative blocks treated by laser and conventional surface treatments. Microsc Res Tech. 2021;84(6):1145-54. [Crossref] [PubMed]
- Martos J, Osinaga PWR, Oliveira ED, Castro LASD. Hydrolytic degradation of composite resins: effects on the microhardness. Materials Research 2003;6(4):599-604. [Crossref]
- Buehler E, Branham S, Ali A, Chang JJ, Hofmann MK, Hurst A, et al. Sharing is caring: Assistive technology designs on thingiverse. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2015;525-34. [Crossref]
- FormLabs [Internet]. Application guide: 3D printing permanent crowns with the form 3B. Formlabs; 2021. (Cited: 25.03.2023) Available from: [Link]
- Dental Resin Permanent Crown. Available from: [Link]
- Formlabs. Instructions for Use. Available from: [Link]
- Francisco I, Travassos R, Nunes C, Ribeiro M, Marques F, Pereira F, et al. What is the most effective technique for bonding brackets on ceramic-a systematic review and meta-analysis. Bioengineering (Basel). 2022;9(1):14. [Crossref] [PubMed] [PMC]
- Sevmez H, Güngör MB, Yılmaz H. Surface treatments of all ceramic restorations. Journal of Ege University School of Dentistry. 2018;39(3):148-59. [Crossref]
- G-Premio BOND Technique Guide. Available from: [Link]
- de Mello CC, Bitencourt SB, Dos Santos DM, Pesqueira AA, Pellizzer EP, Goiato MC. The effect of surface treatment on shear bond strength between Y-TZP and veneer ceramic: a systematic review and meta-analysis. J Prosthodont. 2018 ;27(7):624-35. [Crossref] [PubMed]
- Dutra D, Pereira G, Kantorski KZ, Exterkate R, Kleverlaan CJ, Valandro LF, et al. Grinding with diamond burs and hydrothermal aging of a Y-TZP material: effect on the material surface characteristics and bacterial adhesion. Oper Dent. 2017;42(6):669-78. [Crossref] [PubMed]
- Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig. 2015;19(8):2007-13. [Crossref] [PubMed]
- Hickel R, Brüshaver K, Ilie N. Repair of restorations--criteria for decision making and clinical recommendations. Dent Mater. 2013;29(1):28-50. [Crossref] [PubMed]
- Schwenter J, Schmidli F, Weiger R, Fischer J. Adhesive bonding to polymer infiltrated ceramic. Dent Mater J. 2016;35(5):796-802. [Crossref] [PubMed]
- Barutcigil K, Barutcigil Ç, Kul E, Özarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont. 2019;28(1):71-8. [Crossref] [PubMed]
- Graf T, Erdelt KJ, Güth JF, Edelhoff D, Schubert O, Schweiger J. Influence of pre-treatment and artificial aging on the retention of 3D-printed permanent composite crowns. Biomedicines. 2022;10(9):2186. [Crossref] [PubMed] [PMC]
- Albahri R, Yoon HI, Lee JD, Yoon S, Lee SJ. Shear bond strength of provisional repair materials bonded to 3D printed resin. J Dent Sci. 2021;16(1):261-7. [Crossref] [PubMed] [PMC]
- Lim NK, Shin SY. Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins. J Adv Prosthodont. 2020;12(5):322-8. [Crossref] [PubMed] [PMC]
- Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28(5):467-77. [Crossref] [PubMed]
- Staxrud F, Dahl JE. Silanising agents promote resin-composite repair. Int Dent J. 2015;65(6):311-5. [Crossref] [PubMed] [PMC]
- Toman M, Toksavul S, Artunç C, Türkün M, Schmage P, Nergiz I. Influence of luting agent on the microleakage of all-ceramic crowns. J Adhes Dent. 2007;9(1):39-47. [PubMed]
- Dias de Souza GM, Thompson VP, Braga RR. Effect of metal primers on microtensile bond strength between zirconia and resin cements. J Prosthet Dent. 2011;105(5):296-303. [Crossref] [PubMed]
- Okutan Y, Yücel MT, Dönmez MB, Gezer T. Effect of an MDP-containing primer on the bond strength between ten different resin cements and air-abraded monolithic zirconia. Meandros Medical and Dental Journal. 2021;22(2):148. [Crossref]
- Lankes V, Reymus M, Liebermann A, Stawarczyk B. Bond strength between temporary 3D printable resin and conventional resin composite: influence of cleaning methods and air-abrasion parameters. Clin Oral Investig. 2023;27(1):31-43. [Crossref] [PubMed] [PMC]
- Jung SN, Rüttermann S. Influence of mechanical and chemical pre-treatments on the repair of a hybrid ceramic. Dent Mater. 2022;38(7):1140-8. [Crossref] [PubMed]
.: Process List