Genom, bir organizmanın içerdiği genlerin bütünüdür. Bu genlerin birbirleri ve çevre ile etkileşimini inceleyen çalışmalar genomik olarak ifade edilmektedir. Genomikler, bir organizmanın genomunun dizilişini ve analizini ilgilendiren bir genetik alanıdır. Omik teknolojileri altında genomik, proteomik ve metabolomik teknolojilerinden söz edilmektedir. Bu tüm yeni yaklaşımlar toksisitenin öngörülmesinde, toksisite oluşumunun altında yatan moleküler olayların anlaşılmasını sağlamaktadır. Toksikogenomik ise insan sağlığı ve çevre üzerine zararlı etmenlere karşı organizmadaki gen ve protein aktivitelerinin incelendiği ve toksikoloji ve genomiğin bir arada yer aldığı toksikolojinin bir alt dalıdır. Gen ekspresyon mikroarray teknolojinin gelişmesiyle binlerce genin transkripsiyon seviyesi aynı anda değerlendirilebilir. DNA mikroarray analizi ve protein chipleri gibi yeni moleküler teknolojiler, binlerce gen ve proteinin aynı anda ekspresyonuna olanak sağlayarak toksisite yolaklarının, spesifik kimyasal ve ilaç hedeflerinin keşfini hızlandırmaktadır. Bu yeni toksikogenomik yöntemler toksikoloji alanının gelişimine de olanak sağlamıştır. Omik teknolojileri tüm transkriptom, proteom ve metabonomun incelenmesine izin vermektedir. Bu nedenle omik çalışmalarda büyük miktarda veri üretilmektedir. Bu durum, veri işleme ve veri analizi için yeni kavramları gerektirmiştir. Biyoinformatik çalışmaları bu alanda önem kazanmıştır. Bu çalışmalar ile büyük veri kümeleri içindeki ve arasındaki ilişkiler çeşitli algoritmalar ve biyoistatistiksel yöntemler ile ortaya çıkarılmaktadır. Sonuç olarak, toksikogenomiğin toksikolojide çok önemli bir yeri bulunmaktadır. Bu çalışmada, toksikolojide yeni toksikogenomik gelişmelerin kapsamlı olarak tartışılması amaçlanmıştır.
Anahtar Kelimeler: Toksikoloji; toksikogenetik; genomlar; proteomlar; omik teknolojileri
A genome is the whole of an organism's genes. Studies that examine the interaction of these genes with each other and with the environment are expressed as "genomics". Genomics is an area within genetics that concerns the sequencing and analysis of an organism's genome. Genomics, proteomics and metabolomics technologies are mentioned under omics technology. All these new approaches provide an understanding of the molecular events that underlie toxicity formation for the prediction of toxicity. Toxicogenomics is a subdisiplin of toxicology, where toxicology and genomics coexist, and gene and protein activities in the organism are examined against harmful agents on human health and the environment. By the development of gene expression microarray technology, thousands of genetic transcription levels can be evaluated at the same time. New molecular technologies, such as DNA microarray analysis and protein chips, accelerates the discoveries of toxic pathways, specific chemical and drug targets by enabling the simultaneous expression of thousands of genes and proteins. These new toxicogenomic methods also enable the development of the field of toxicology. Omics technology allows the investigation of all transcriptomics, proteomics and metabonomics. For this reason, large amounts of data are generated in omics studies. This requires new concepts for data processing and data analysis. Bioinformatics studies have gained importance in this area. The relations between these studies and large data sets are revealed by various algorithms and biostatistical methods. In conclusion, toxicogenomics has a very important place in toxicology. Within this rewiev, the new toxicogenomic developments in toxicology were discussed.
Keywords: Toxicology; toxicogenetics; genomics; proteomics; omic technologies
- Başaran E, Aras S, Duman D. [Overview of genomic, proteomic and metabolomic terms and their application areas]. Turk Hij Den Biyol Derg. 2010;67(2):8596.
- Suter-Dick L, Singer T. Methods in toxicology. In: Greim H, Snyder R, eds. Toxicology and Risk Assessment: A Comprehensive Introduction. 1st ed. West Sussex: John Wiley & Sons; 2008. p.437-49.
- Kurban S, Mehmetoğlu İ. [Proteomic]. Yeni Tıp Dergisi. 2010;27(2):70-5.
- Hamadeh HK, Amin RP, Paules RS, Afshari CA. An overview of toxicogenomics. Curr Issues Mol Biol. 2002;4(2):45-56.
- Borlak J. Application of toxicogenomic: case studies. Handbook of Toxicogenomics. 1st ed. Weinheim: Wiley-VCH; 2005. p.325-486. [Crossref]
- Chen M, Zhang M, Borlak J, Tong W. A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci. 2012;130(2):217-28. [Crossref]
- Suter L, Haiker M, De Vera MC, Albertini S. Effect of two 5-HT6 receptor antagonists on the rat liver: a molecular approach. Pharmacogenomics J. 2003;3(6):320-34. [Crossref]
- Castle AL, Carver MP, Mendrick DL. Toxicogenomics: a new revolution in drug safety. Drug Discov Today. 2002;7(13):728-36. [Crossref]
- Waters MD, Olden K, Tennant RW. Toxicogenomic approach for assesing toxicant-related disease. Mut Res. 2003;544(2-3):415-24. [Crossref]
- Yuluğ I. [Human genom project]. Avrasya Dosyası Moleküler Biyoloji ve Gen Teknolojileri Özel. 2002;8(3):7-23.
- Stanton LW. Methods to profile gene expression. Trends Cardiovasc Med. 2001;11(2):49-54. [Crossref]
- Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467-70. [Crossref]
- Özcengiz G. [Proteomic: The most powerful technology of the post-genomic period]. METU Newsletter. 2007;15:13-9.
- Mik?ík I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci. 2018 Sep 20. Doi: 10.1002/jssc.201800817. [Epub ahead of print]. [Crossref]
- Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol Cell Proteomics. 2006;5(10):1811-8. [Crossref]
- Meleady P. Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol Biol. 2018;1664:3-14. [Crossref]
- Huang Y, Zhu H. Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinformatics. 2017;15(2):73-81. [Crossref] [PMC]
- Venter JC. A part of the human genome sequence. Science 2003;299(5610):1183-4. [Crossref]
- German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1(1):3-9. [Crossref] [PMC]
- Zacharias HU, Altenbuchinger M, Gronwald W. Statistical analysis of NMR metabolic fingerprints: established methods and recent advances. Metabolites. 2018;8(3). [Crossref] [PMC]
- Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LCMS/MS data in metabolomics. Metabolites. 2018;8(2). [Crossref] [PMC]
- Nedelkov D. Population proteomics: investigation of protein diversity in human populations. Proteomics. 2008;8(4):779-86. [Crossref] [PubMed]
- Atalay RÇ. [Why bioinformatics?]. Avrasya Dosyası Moleküler Biyoloji ve Gen Teknolojileri Özel. 2002;8(3):129-41.
- Baxevanis AD, Ouellette BFF. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. 2nd ed. New York: John Wiley & Sons Inc; 2001. p.470. [Crossref]
- Barel G, Herwig R. Network and pathway analysis of toxicogenomics data. Front Genet. 2018;9:484. [Crossref]
- Suter L, Babiss LE, Wheeldon EB. Toxicogenomics in predictive toxicology in drug development. Chem Biol. 2004;11(2):161-71. [Crossref]
- Gao Y, Cao Z, Yang X, Abdelmegeed MA, Sun J, Chen S, et al. Proteomic analysis of acetaminopheninduced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury. Proteomics Clin Appl. 2017;11(1-2). [Crossref]
- Rouquié D, Heneweer M, Botham J, Ketelslegers H, Markell L, Pfister T, et al. Contribution of new technologies to characterization and prediction of adverse effects. Crit Rev Toxicol. 2015;45(2):172-83. [Crossref]
- Leclercq I, Horsmans Y, Desager JP, Delzenne N, Geubel AP. Reduction in hepatic cytochrome P450 is correlated to the degree of liver fat content in animal models of steatosis in the absence of inflammation. J Hepatol. 1998;28(3):410-6. [Crossref]
- Omiecinski CJ, Hassett C, Costa P. Developmental expression and in situ localization of the phenobarbital-inducible rat hepatic mRNAs for cytochromes CYP2B1, CYP2B2, CYP2C6, and CYP3A1. Mol Pharmacol. 1990;38(4):462-70.
- Barlev NA, Candau R, Wang L, Darpino P, Silverman N, Berger SL. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATAbinding protein. J Biol Chem. 1995;270(33):19337-44. [Crossref]
- Zhong W, Mirkovitch J, Darnell JE Jr. Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol. 1994;14(11): 7276-84. [Crossref]
- Gant TW, Baus PR, Clothier B, Riley J, Davies R, Judah DJ, et al. Gene expression profiles associated with inflammation, fibrosis, and cholestasis in mouse liver after griseofulvin. EHP Toxicogenomics. 2003;111(1T):37-43. [Crossref]
- Gant TW, Greaves P, Smith AG, Gescher A. Toxicogenomics applied to understanding cholestasis and steatosis in the liver. In: Borlak J, ed. Handbook of Toxicogenomics. 1st ed. Weinheim: Wiley-VCH; 2005. p.369-94. [Crossref]
- Thum T, Borlak J. Toxicogenomics applied to cardiovascular toxicity. In: Borlak J, ed. Handbook of Toxicogenomics. 1 st ed. Weinheim: Wiley-VCH; 2005. p.395-412. [Crossref]
- Arrell DK, Neverova I, Van Eyk JE. Cardiovascular proteomics: evolution and potential. Circ Res. 2001;88(8):763-73. [Crossref]
- Deavall DG, Moggs JG, Orphanides G. Toxicogenomics applied to endocrine disruption. In: Borlak J, ed. Handbook of Toxicogenomics. 1st ed. Weinheim: Wiley-VCH; 2005. p.413-33. [Crossref]
- Waters KM, Safe S, Gaido K. Differential gene expression in response to methoxychlor and estradiol through ERalpha, ERbeta, and AR in reproductive tissues of female mice. Toxicol Sci. 2001;(63):47-56. [Crossref]
- Hewitt PG, Kramer PJ, Borlak J. Toxicogenomics applied to teratogenicity studies. In: Borlak J, ed. Handbook of Toxicogenomics. 1st ed. Weinheim: Wiley-VCH; 2005. p.435-69. [Crossref]
- Rosen MB, Chernoff N. 5-Aza-2?-deoxycytidineinduced cytotoxicity and limb reduction defects in the mouse. Teratology. 2002;65(4):180-90. [Crossref]
- Lühe A, Hildebrand H. Toxicogenomics applied to nephrotoxicity. In: Borlak J, ed. Handbook of Toxicogenomics. 1st ed. Weinheim: Wiley-VCH; 2005. p.471-86. [Crossref]
- Katsuma S, Shiojima S, Hirasawa A, Takagaki K, Kaminishi Y, Koba M, et al. Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochem Biophys Res Commun. 2002;296(3):544-52. [Crossref]
- McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ Res. 2006;98(3):309-21. [Crossref]
- Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3(4):267-75. [Crossref]
- Qin C, Tanis KQ, Podtelezhnikov AA, Glaab WE, Sistare FD, DeGeorge JJ. Toxicogenomics in drug development: a match made in heaven? Expert Opin Drug Metab Toxicol. 2016;12(8):847-9. [Crossref]
- Alexander-Dann B, Pruteanu LL, Oerton E, Sharma N, Berindan-Neagoe I, Módos D, et al. Developments in toxicogenomics: understanding and predicting compound-induced toxicity from gene expression data. Mol Omics. 2018;14(4): 218-36.[Crossref]
.: Process List