Uzun yıllardır kanser tedavisinin esaslarını kemoterapi, radyoterapi ve cerrahi oluşturmakta iken, son iki dekadda 'hedefe yonelik ajanlar' coğu kanserin standart tedavisinde yerini almıştır. Yakın zamanda ise, 'immunoterapi', yani kişinin bağışıklık sisteminin aktive edilerek kanserli hucrelerle mucadele etmesi temeline dayanan yontem, kanser tedavisinde onemli bir alternatif olmuştur. İmmunoterapide elde edilen son gelişme ise kanser tedavisinde devrim olarak gosterilen kimerik antijen reseptor (CAR; chimeric antigen receptor)-T-hucre tedavisidir. Bu tedavi şekli, ozellikle direncli hastalığı olan hematolojik maligniteli vakalara yeni umut ışığı getirmiştir. Klinik denemeler, son donem hastalarda oldukca cesaret verici sonuclar olduğunu gostermiştir. 2017 yılında, iki CAR-T-hucre tedavisi, biri akut lenfoblastik losemili cocukların, diğeri de ilerlemiş lenfomalı erişkinlerin tedavisi icin, Amerikan Gıda ve İlac İdaresi tarafından onaylanmıştır. CAR-T-hucre tedavisi ozellikle B hucre malignitelerine karşı aktif gorulmektedir. Bu durum, CD19 veya CD20'nin tumor hucresi secici ve homojen ekspresyonunun yanı sıra CAR T hucrelerine daha kolay erişimden kaynaklanmaktadır. Ancak, araştırmacılar halen meme kanseri ve kolorektal kanser gibi katı tumorlere karşı etkili olup olmayacağına ilişkin araştırmaları surdurmektedir. CAR-T-hucre tedavisi, etkileyici klinik faydalar gostermiş olsa da bazen yaşamı tehdit edici olabilecek ceşitli toksisiteler ile de ilişkilidir. Sitokin salınım sendromu şu ana kadar en sık gozlenen ilac reaksiyonu olmuştur. Bu calışmada, CAR-T-hucre tedavisinin ozellikleri, yan etkileri ve ozellikle hematolojik kanserlerdeki uygulamalarından bahsedilecektir.
Anahtar Kelimeler: CD19 antijen; hematolojik maligniteler
Chemotherapy, radiation therapy and surgery have been the mainstay of cancer treatment for years, while targeted therapies have cemented as standard treatments for many cancers over the last two decades. Nowadays, immunotherapy based on the activation of the patient's immune system to attack cancer cells-has emerged as an important alternative in cancer treatment. And the latest developments in immunotherapy is a revolutionary cancer treatment called as chimeric antigen reseptor (CAR)-T cell therapy. This type of treatment has brought new hope to patients with relapse/refractary hematological malignancies. Clinical trials have shown very encouraging results in end-stage patients. In 2017, two CAR-T-cell therapies were approved by the Food and Drug Administration, one for the treatment of children with acute lymphoblastic leukemia and the other for adults with advanced lymphomas. CAR-T-cell therapy appears to be especially active against B‐cell malignancies. This is due to the tumor cell selective and homogenous expression of CD19 or CD20 as well as the easier access for CAR-T-cells. Nevertheless, researchers are still investigating whether they will be effective against solid tumors such as breast cancer and colorectal cancer. While CAR-T-cell therapy has shown impressive clinical advantage, it is sometimes related with a variety of toxicities that can be life‐threatening. Cytokine-release syndrome has been the most common observed adverse drug reaction. In this review, the characteristics, side effects and especially the applications of CART- cell therapy in hematological cancers will be discussed.
Keywords: CD19 antigens; hematological neoplasms
- Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725-33. [Crossref] [PubMed] [PMC]
- Zhao Z, Chen Y, Francisco NM, Zhang Y, Wu M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B. 2018;8(4):539-51. [Crossref] [PubMed] [PMC]
- Mikkilineni L, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood. 2017;130(24):2594-602. [Crossref] [PubMed] [PMC]
- Enblad G, Karlsson H, Loskog AS. CAR-T-cell therapy: the role of physical barriers and immunosuppression in lymphoma. Hum Gene Ther. 2015;26(8):498-505. [Crossref] [PubMed] [PMC]
- Lorentzen CL, Straten PT. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307-19. [Crossref] [PubMed]
- Maus MV, Levine BL. Chimeric antigen receptor T-Cell therapy for the community oncologist. Oncologist. 2016;21(5):608-17. [Crossref] [PubMed] [PMC]
- Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116(19):3875-86. [Crossref] [PubMed] [PMC]
- Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907-12. [Crossref] [PubMed] [PMC]
- Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62-8. [Crossref] [PubMed] [PMC]
- Davila ML, Kloss CC, Gunset G, Sadelain M. CD19 CAR-targeted T cells induce long-term remission and B cell aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS One. 2013;8(4): e61338. [Crossref] [PubMed] [PMC]
- Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5-18. [Crossref] [PubMed]
- Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31-46. [Crossref] [PubMed]
- Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507-17. [Crossref] [PubMed] [PMC]
- Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709-20. [Crossref] [PubMed] [PMC]
- Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR-T-cell therapy. Mol Ther Oncolytics. 2016;3: 16011. [Crossref] [PubMed] [PMC]
- Kaplan JB, Grischenko M, Giles FJ. Blinatumomab for the treatment of acute lymphoblastic leukemia. Invest New Drugs. 2015;33(6):1271-9. [Crossref] [PubMed]
- Jeha S, Gaynon PS, Razzouk BI, Franklin J, Kadota R, Shen V, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006;24(12):1917-23. [Crossref] [PubMed]
- von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C, et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol. 2016;34(36):4381-9. [Crossref] [PubMed]
- Perez-Amill L, Marzal B, Urbano-Ispizua A, Juan M, Martin-Antonio B. CAR-T cell therapy: a door is open to find innumerable possibilities of treatments for cancer patients. Turk J Haematol. 2018;35(4):217-28. [Crossref] [PubMed] [PMC]
- Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Eng J Med. 2018;378 (5):439-48. [Crossref] [PubMed] [PMC]
- Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800-8. [Crossref] [PubMed] [PMC]
- Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540-9. [Crossref] [PubMed] [PMC]
- Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116. [Crossref] [PubMed] [PMC]
- Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A, Rossi J, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16): 1803-13. [Crossref] [PubMed] [PMC]
- Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531-44.
- Abramson JS, Palomba ML, Gordon LI, Lunning MA, Arnason JE, Forero-Torres A,et al. CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017 (TRANSCEND NHL 001). J Clin Oncol. 2017;35(Suppl):7513. [Crossref]
- Schuster SJ, Bishop MR, Tam C, Waller EK, Borchmann P, Mcguirk J, et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL)--an interim analysis. Hematol Oncol. 2017;35(Suppl S2):27. [Crossref]
- Dreger P, Schetelig J, Andersen N, Corradini P, van Gelder M, Gribben J, et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood. 2016;124(26):3841-9. [Crossref] [PubMed] [PMC]
- Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446-56. [Crossref] [PubMed] [PMC]
- Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127(9): 1117-27. [Crossref] [PubMed] [PMC]
- Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688-700. [Crossref] [PubMed] [PMC]
- Cohen AD, Garfall AL, Stadtmauer EA, Lacey SF, Lancaster E, Vogl DT, et al. B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for multiple myeloma (MM): initial safety and efficacy from a phase I study. Blood. 2016;128 (22):1147. [Crossref]
- Berdeja JG, Lin Y, Raje NS, Siegel DS, Munshi NC, Liedtke M, et al. First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: updated results. J Clin Oncol. 2017;35(Suppl 15):3010. [Crossref]
- Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol. 2016;28(1): 64-72. [Crossref] [PubMed]
- Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122(17):2965-73.
- Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112-21. [Crossref] [PubMed] [PMC]
- Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116. [Crossref] [PubMed] [PMC]
- Kunkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, et al. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas-FasL-dependent AICD. Cancer Immunol Res. 2015;3(4):368-79. [Crossref] [PubMed]
- Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017;25(11):2452-65. [Crossref] [PubMed] [PMC]
- Gargett T, Yu W, Dotti G, Yvon ES, Christo SN, Hayball JD, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol Ther. 2016;24(6):1135-49. [Crossref] [PubMed] [PMC]
- Kenderian SS, Porter DL, Gill S. Chimeric antigen receptor T cells and hematopoietic cell transplantation: how not to put the CART before the horse. Biol Blood Marrow Transplant. 2017;23(2):235-46. [Crossref] [PubMed] [PMC]
- Brudno JN, Shi D, Stroncek D, Pittaluga S, Kanakry JA, Curtis LM, et al. T cells expressing a novel fully-human anti-CD19 chimeric antigen receptor induce remissions of advanced lymphoma in a first-in-humans clinical trial. Blood. 2016;128(22):999. [Crossref]
- Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017;31(10):2191-9. [Crossref] [PubMed] [PMC]
- Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126(10): 3814-26. [Crossref] [PubMed] [PMC]
- Schneider D, Xiong Y, Wu D, N?lle V, Schmitz S, Haso W, et al. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer. 2017;5:42. [Crossref] [PubMed] [PMC]
- Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016;24(3):-570-81. [Crossref] [PubMed] [PMC]
- Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113-7. [Crossref] [PubMed] [PMC]
- Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123-38. [Crossref] [PubMed] [PMC]
- Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V, Hocker JD, et al. Generation of clinical-grade CD19-specific CAR-modified CD81 memory stem cells for the treatment of human B-cell malignancies. Blood. 2016;128(4):519-28. [Crossref] [PubMed] [PMC]
- Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, et al. The addition of the BTK inhibitor ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res. 2016;22(11):2684-96. [Crossref] [PubMed]
- Ansell SM, Lesokhin AM, Borello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311-9. [Crossref] [PubMed] [PMC]
- Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34(31):3733-9. [Crossref] [PubMed] [PMC]
- Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125 (22):3393-400. [Crossref] [PubMed]
- Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14(4): 203-20. [Crossref] [PubMed]
- Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell- intrinsic PD-1 checkpoint blockade resist tumor- mediated inhibition. J Clin Invest. 2016;126(8):3130-44. [Crossref] [PubMed] [PMC]
.: Process List