İmmün sistem hücreleri, bir yandan kanser hücrelerine karşı antitümöral etkinlik gösterirken diğer yandan kronik inflamasyon zemininde tümör gelişimi ve progresyonunda rol alırlar. Yani inflamasyon, tümör hücrelerini ortadan kaldırabildiği gibi karsinogeneze katkı da sağlayabilir. İnflamasyonun bu ikili rolü, immün yetmezliği olan hastalarda daha çok kanser gelişimi yönünde kendini gösterir. Kronik inflamasyon kanserde önemli bir role sahipken, akut inflamasyonun tümör ilerlemesi üzerindeki etkisi hakkında daha az şey bilinmektedir. İlginç bir şekilde, uzun süreli nonsteroid antiinflamatuar ilaçların kullanımı sonucu kronik inflamasyonun baskılanması, özellikle kolorektal kanserler için risk azalımı sağlamaktadır. Dolayısıyla inflamatuar yanıtı terapötik olarak ayarlayabilmek, kansere karşı mücadelede çok önemli olacaktır. Adaptif T hücrelerini ve antikorları içeren pasif immünoterapilerle son zamanlarda yüz güldürücü sonuçlar elde edilmiştir. Ancak doğuştan gelen (innate) immün sistemin, endojen olarak ortaya çıkan kanseri nasıl tanıdığı, moleküler düzeyde yeterince anlaşılmamıştır ve bu, aktif kanser immünoterapisinin geliştirilmesinde önemli bir engel teşkil etmektedir. Kanser hücreleri ve doğuştan gelen (innate) immün sistem hücrelerinin doğrudan veya dolaylı yollarla etkileşim mekanizmalarını aydınlatmak, mevcut immünoterapilerin de etkisini potansiyelize edecektir. Güncel literatür daha çok immün hücrelerin aktivasyonunun kanser hücreleri ile savaşta önemli role sahip olduklarından bahsetmektedir. Bu derlemede, kanserin gelişiminden son evresine dek olan süreçte, özellikle doğal (innate) immün sistem elemanlarının kronik inflamasyon zemininde kanser oluşumu ve progresyonundaki rollerini değerlendirmeye çalıştık.
Anahtar Kelimeler: Karsinogenez; bağışıklık sistemi; doğal bağışıklık; kazanılmış bağışıklık
Immune system cells show antitumoral activity against cancer cells but they also play a role in tumor development and progression on the basis of chronic inflammation. In other words, inflammation can both eliminate tumor cells and contribute to carcinogenesis. This dual role of inflammation is more evident in the development of cancer in immunocompromised patients. Although chronic inflammation has an important role in cancer, the effect of acute inflammation on tumor progression is less known. Suppression of chronic inflammation as a result of long-term use of nonsteroidal anti-inflammatory drugs interestingly provides a reduced risk, especially for colorectal cancers. Therefore therapeutically adjusting the inflammatory response will be crucial in the fight against cancer. Promising results have been obtained with passive immunotherapy including adaptive T cells and antibodies, recently. However, how the innate immune system recognizes endogenous cancer is poorly understood at the molecular level, and this still represents a major obstacle to the development of active cancer immunotherapy. Illüminating the interaction mechanisms of cancer cells and innate immune system cells directly or indirectly will potentiate the effect of exist immunotherapies. Current literature generally mentions that the activation of immune cells has an important role in the fight against cancer cells. In this review, we tried to evaluate the role of innate immune system elements in the formation and progression of cancer in the context of chronic inflammation, from the development of cancer to its final stage.
Keywords: Carcinogenesis; immune system; innate immunity; adaptive immunitiy
- Monica Escamilla-Tilch, Georgina Filio-Rodriquez, Rosario García-Rocha, Macilla-Herrara I, Mitchison NA, Ruiz-Pacheco JA, et al. The interplay between pathogen‐associated and danger‐associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol. 2013;91(10):601-10. [Crossref] [PubMed]
- Mantovani A. Cancer: inflaming metastasis. Nature. 2009;457(7225):36-7. [Crossref] [PubMed]
- Bosch FX, Lorincz A, Mu-oz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244-65. [Crossref] [PubMed] [PMC]
- Lakatos PL, Lakatos L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol. 2008;14(25):3937-47. [Crossref] [PubMed] [PMC]
- Samraj AN, Pearce OM, Läubli H, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542-7. [Crossref] [PubMed] [PMC]
- Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19(22):6074-83. [Crossref] [PubMed] [PMC]
- Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-45. [Crossref] [PubMed]
- Ratliff TL, Gillen D, Catalona WJ. Requirement of a thymus dependent immune response for BCG-mediated antitumor activity. J Urol. 1987;137(1):155-8. [Crossref] [PubMed]
- Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes. JAMA Oncol. 2016;2(10):1354-60. [Crossref] [PubMed]
- Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother. 2010;59(9):1295-312. [Crossref] [PubMed] [PMC]
- Baselga J, Albanell J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol. 2001;12(Suppl 1):S35-41. [Crossref] [PubMed]
- Dasanu CA, Bockorny B, Grabska J, Codreanu I. Prevalence and pattern of autoimmune conditions in patients with marginal zone lymphoma: a single ınstitution experience. Conn Med. 2015;79(4):197-200. [PubMed]
- Fallah M, Liu X, Ji J, Forsti A, Sundquist K, Hemminki K. Hodgkin lymphoma after autoimmune diseases by age at diagnosis and histological subtype. Ann Oncol. 2014;25(7):1397-404. [Crossref] [PubMed]
- Ehrenfeld M. Cancer and autoimmunity. In: Anaya JM, Cervera R, Levy RA, Rojas-Villarraga A, Shoenfeld Y, eds. Autoimmunity: From Bench to Bedside. 1st ed. Bogota, Colombia : Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, El Rosario University; 2013. p.683-9.
- Nayak P, Luo R, Elting L, Zhao H, Suarez-Almazor ME. Impact of rheumatoid arthritis on the mortality of elderly patients who develop cancer: a population-based study. Arthritis Care Res (Hoboken). 2017;69(1):75-83. [Crossref] [PubMed]
- Liang Y, Yang Z, Qin B, Zhong R. Primary Sjogren's syndrome and malignancy risk: a systematic review and meta-analysis. Ann Rheum Dis. 2014;73(6):1151-6. [Crossref] [PubMed]
- Mao S, Shen H, Zhang J. Systemic lupus erythematosus and malignancies risk. J Cancer Res Clin Oncol. 2016;142(1):253-62. [Crossref] [PubMed]
- Giat E, Ehrenfeld M, Shoenfeld Y. Cancer and autoimmune diseases. Autoimmun Rev. 2017;16(10):1049-57. [Crossref] [PubMed]
- Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171-83. [Crossref] [PubMed]
- Lucas SB. Squamous cell carcinoma of the bladder and schistosomiasis. East Afr Med J. 1982;59(5):345-51. [PubMed]
- Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233-47. [Crossref] [PubMed] [PMC]
- Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303-10. [Crossref] [PubMed]
- Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008;26(27):4410-7. [Crossref] [PubMed]
- Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7(12):e50946. [Crossref] [PubMed] [PMC]
- Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15(12):731-44. [Crossref] [PubMed] [PMC]
- Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55. [Crossref] [PubMed]
- Qian BZ, Zhang H, Li J, He T, Yeo EJ, Soong DY, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212(9):1433-48. [Crossref] [PubMed] [PMC]
- Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58. [Crossref] [PubMed]
- Shojaei F, Zhong C, Wu X, Yu L, Ferrara N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 2008;18(8):372-8. [Crossref] [PubMed]
- Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67. [Crossref] [PubMed] [PMC]
- Kamp DW, Graceffa P, Pryor WA, Weitzman SA. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293-315. [Crossref] [PubMed]
- Iguchi H, Kojo S, Ikeda M. Nitric oxide (NO) synthase activity in the lung and NO synthesis in alveolar macrophages of rats increased on exposure to asbestos. J Appl Toxicol. 1996;16(4):309-15. [Crossref] [PubMed]
- Donskov F. Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Semin Cancer Biol. 2013;23(3):200-7. [Crossref] [PubMed]
- Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A. 2014;111(15):5664-9. [Crossref] [PubMed] [PMC]
- Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 2010;16(2):219-23. [Crossref] [PubMed] [PMC]
- Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179-94. [Crossref] [PubMed] [PMC]
- Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367-80. [Crossref] [PubMed] [PMC]
- Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun. 2021;27(3):212-29. [Crossref] [PubMed] [PMC]
- Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91-128. [Crossref] [PubMed] [PMC]
- Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79(12):2320-8. [Crossref] [PubMed]
- Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 2000;88(3):577-83. [Crossref] [PubMed]
- Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med. 2013;210(10):2057-69. [Crossref] [PubMed] [PMC]
- Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6(12):940-52. [Crossref] [PubMed]
- Andrews DM, Sullivan LC, Baschuk N, Chan CJ, Berry R, Cotterell CL, et al. Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nat Immunol. 2012;13(12):1171-7. [Crossref] [PubMed] [PMC]
- Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol. 2012;188(6):2509-15. [Crossref] [PubMed]
- Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40(5):642-56. [Crossref] [PubMed]
- Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 2015;194(7):2985-91. [Crossref] [PubMed] [PMC]
- Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38(4):729-41. [Crossref] [PubMed]
- Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, et al. Phase II Study of Autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ıpilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330-8. [Crossref] [PubMed]
- Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cdc1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022-37.e14. [Crossref] [PubMed] [PMC]
- Kusuda T, Shigemasa K, Arihiro K, Fujii T, Nagai N, Ohama K. Relative expression levels of Th1 and Th2 cytokine mRNA are independent prognostic factors in patients with ovarian cancer. Oncol Rep. 2005;13(6):1153-8. [Crossref] [PubMed]
- Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263-71. [Crossref] [PubMed]
- Kondo T, Nakazawa H, Ito F, Hashimoto Y, Osaka Y, Futatsuyama K, et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci. 2006;97(8):780-6. [Crossref] [PubMed]
- Vesalainen S, Lipponen P, Talja M, Syrjänen K. Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer. 1994;30A(12):1797-803. [Crossref] [PubMed]
- Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S, Tabuchi T. Evaluations of interferon-γ/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol. 2010;102(7):742-7. [Crossref] [PubMed]
- Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107-11. [Crossref] [PubMed]
- Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-99. [Crossref] [PubMed] [PMC]
- Teng MW, Galon J, Fridman WH, Smyth MJ. From mice to humans: developments in cancer immunoediting. J Clin Invest. 2015;125(9):3338-46. [Crossref] [PubMed] [PMC]
- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. [Crossref] [PubMed] [PMC]
- Ward-Hartstonge KA, Kemp RA. Regulatory T-cell heterogeneity and the cancer immune response. Clin Transl Immunology. 2017;6(9):e154. [Crossref] [PubMed] [PMC]
- Bos PD, Plitas G, Rudra D, Lee SY, Rudensky AY. Transient regulatory cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med. 2013;210(11):2435-66. [Crossref] [PubMed] [PMC]
- Allaoui R, Hagerling C, Desmond E, Warfvinge CF, Jirström K, Leandersson K. Infiltration of γδ T cells, IL-17+ T cells and FoxP3+ T cells in human breast cancer. Cancer Biomark. 2017;20(4):395-409. [Crossref] [PubMed] [PMC]
- Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, et al. Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer. 2012;77(2):306-11. [Crossref] [PubMed]
- Wang Q, Feng M, Yu T, Liu X, Zhang P. Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells. Cell Immunol. 2014;287(2):100-5. [Crossref] [PubMed]
- Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, et al. Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 2016;76(4):818-30. [Crossref] [PubMed]
- De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015;15(3):137-48. [Crossref] [PubMed] [PMC]
- Chin Y, Janseens J, Vandepitte J, Vandenbrande J, Opdebeek L, Raus J. Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Res. 1992;12(5):1463-6. [PubMed]
- Yang C, Lee H, Jove V, Deng J, Zhang W, Liu X, et al. Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. PLoS One. 2013;8(1):e54029. [Crossref] [PubMed] [PMC]
- de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7(5):411-23. [Crossref] [PubMed]
- Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A. 2011;108(26):10662-7. [Crossref] [PubMed] [PMC]
- Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505-15. [Crossref] [PubMed] [PMC]
- Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 2016;6(3):247-55. [Crossref] [PubMed] [PMC]
.: Process List