Koryoamniyonit; koryon, amniyotik sıvı, umbilikal kordon ve fetal membranların 20. gestasyon haftasından sonra oluşan enfeksiyon ve/veya inflamasyondur. Çoğunluğu subklinik olup, plasentanın retrospektif histopatolojik analizi ile tanımlanabilmektedir. Enfeksiyonun en sık gelişme şekli, erken membran rüptürü sonrası bakterilerin alt genital sistemden asendan yolla serviks ve koryodesiduel alan üzerinden koryoamniyonik zarı geçerek, amniyotik sıvıya ve fetüse ulaşmasıdır. Ancak bakteriler, membran rüptüre olmadan da hematojen yolla, periton boşluğundan fallopyan tüplerine geçerek veya invaziv işlemler sırasında inoküle edilerek fetüse ulaşabilir. Fetüse geçiş yolu ise fetal damarlara invaze olarak koryovaskülitis veya amniyotik boşluğa geçerek amniyonit yapan bakterilerin, fetal solunum yolu, gastrointestinal yol, timpanik zar ya da konjonktiva gibi mukoz membranlara ulaşımıdır. En sık etkenlerin Ureaplasma suşları (U. parvum ve U. urealyticum) ve genital mikoplazmalar (Mycoplasma hominis) olduğu bilinmektedir; ancak tanımlanan bir mikroorganizma olmadan da gerçekleşebilir. Fetal inflamatuar yanıt sendromu, koryoamniyonit nedeni ile fetal immün sistemin sistemik aktivasyonu ve buna bağlı fetal organların çoğunda ortaya çıkan inflamasyon/enfeksiyon bulgularının toplamıdır. Fetal plazma, interlökin-6 düzey yüksekliği (>11 pg/mL) ve histolojik olarak koryoamniyonit/funizit saptanması bulgularından en az birinin mevcut olması ile tanımlanabilmektedir. Fetal inflamatuar yanıt sendromu, fetüsün beyin, akciğer, böbrek ve kalbine olumsuz etkileriyle çoklu organ harabiyetine sebep olmaktadır.
Anahtar Kelimeler: Koryoamniyonit; fetal inflamatuar yanıt
Chorioamnionitis is characterized by infection and/or inflammation of the chorion, amniotic fluid, umbilicus and the fetal membranes occuring after the 20th week of gestation. A large proportion of cases are subclinical and not diagnosed until retrospective analysis of the placenta. The most widely accepted route is, ascending of microorganisms from the maternal lower genital tract into the choriodecidual space and crossing the chorioamnionic membrane, thereby reaching the amniotic fluid and fetus, after rupture of membranes. However microorganisms can also reach the amniotic fluid without rupture. The routes to the fetus may be the migration of organisms from the maternal bloodstream across the placenta, anterograde infection from peritoneum via the fallopian tubes, iatrogenic inoculation during invasive procedures. For fetal involvement, bacterias invade the fetal vessels (choriovasculitis) or cross the amnion (amnionitis) into the amniotic cavity, reach the fetus through the respiratory or gastrointestinal tract, or through the mucous membranes (tympanic or conjunctiva). Ureaplasma species (U. parvum, U. urealyticum) and genital mycoplasmas (Mycoplasma hominis) are the most common microorganisms isolated from the amniotic fluid however, it may also occur in the absence of demonstrable microorganisms. The fetal inflammatory response syndrome is a condition characterized by systemic activation of the fetal innate immune system and multiple organ dysfunction due to infection/inflammation. It can be diagnosed with the detection of at least one of the findings of high interleukin-6 concentrations (>11 pg/mL) in fetal plasma and the histological chorioamnionitis/funisitis. Fetal inflammatory response syndrome results in multiorgan disfunction with its negative effects on fetal brain, lung, kidneys and heart.
Keywords: Chorioamnionitis; fetal inflammatory response
- Peng CC, Chang JH, Lin HY, Cheng PJ, Su BH. Intrauterine inflammation, infection, or both (Triple I): a new concept for chorioamnionitis. Pediatr Neonatol. 2018;59(3):231-37. [Crossref] [PubMed]
- Romero R, Chaemsaithong P, Korzeniewski SJ, Tarca AL, Bhatti G, Xu Z, et al. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med. 2016;44(1):5-22.
- Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394-409. [Crossref] [PubMed] [PMC]
- Gupta T, Singh S, Gupta S, Gupta N. Normal implantation, placentation, and fetal development. In: Mehta S, Gupta B, eds. Recurrent Pregnancy Loss. 1st ed. Singapore: Springer; 2018. p.13-40. http://doi.org-443.webvpn.fjmu.edu.cn/10.1007/978-981-10-7338-0_2 Online ISBN: 978-981-10-7338-0 [Crossref]
- Sweeney EL, Dando SJ, Kallapur SG, Knox CL. The human Ureaplasma species as cusative agents of chorioamnionitis. Clin Microbiol Rev. 2017;30(1):349-79. [Crossref] [PubMed] [PMC]
- Higgins RD, Saade G, Polin RA, Grobman WA, Buhimschi IA, Watterberg K, et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: summary of a workshop. Obstet Gynecol. 2016;127(3):426-36. [Crossref] [PubMed] [PMC]
- Randis TM, Polin RA, Saade G. Chorioamnionitis: time for a new approach. Curr Opin Pediatr. 2017;29(2):159-64. [Crossref] [PubMed]
- Greenberg MB, Anderson BL, Schulkin J, Norton ME, Aziz N. A first look at chorioamnionitis management practice variation among US obstetricians. Infect Dis Obstet Gynecol. 2012;2012: 628362. [Crossref] [PubMed] [PMC]
- Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(4 Suppl):S29-52. [Crossref] [PubMed] [PMC]
- Kachikis A, Eckert LO, Walker C, Bardají A, Varricchio F, Lipkind HS, et al; Brighton Collaboration Chorioamnionitis Working Group. Chorioamnionitis: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2019;37(52):7610-22. [Crossref] [PubMed] [PMC]
- Smith MM, Daifotis HA, DeNoble AE, Dotters-Katz SK. Using the new definition of intraamniotic infection-is there morbidity among the women left out? J Matern Fetal Neonatal Med. 2020:1-5. [Crossref] [PubMed]
- Villar J, Papageorghiou AT, Knight HE, Gravett MG, Iams J, Waller SA, et al. The preterm birth syndrome: a prototype phenotypic classification. Am J Obstet Gynecol. 2012;206(2):119-23. [Crossref] [PubMed]
- Newton ER. Preterm labor, preterm premature rupture of membranes, and chorioamnionitis. Clin Perinatol. 2005;32(3):571-600. [Crossref] [PubMed]
- Lee SM, Lee KA, Kim SM, Park CW, Yoon BH. The risk of intra-amniotic infection, inflammation and histologic chorioamnionitis in term pregnant women with intact membranes and labor. Placenta. 2011;32(7):516-21. [Crossref] [PubMed]
- Menon R, Taylor RN, Fortunato SJ. Chorioamnionitis--a complex pathophysiologic syndrome. Placenta. 2010;31(2):113-20. [Crossref] [PubMed]
- Sabogal CPC, Fonseca J, García-Perdomob HA. Validation of diagnostic tests for histologic chorioamnionitis: systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2018;228:13-26. [Crossref] [PubMed]
- Palmsten K, Nelson KK, Laurent LC, Park S, Chambers CD, Parast MM. Subclinical and clinical chorioamnionitis, fetal vasculitis, and risk for preterm birth: a cohort study. Placenta. 2018;67:54-60. [Crossref] [PubMed] [PMC]
- Liu Y, Liu Y, Du C, Zhang R, Feng Z, Zhang J. Diagnostic value of amniotic fluid inflammatory biomarkers for subclinical chorioamnionitis. Int J Gynecol Obstet. 2016;134(2):160-4. [Crossref] [PubMed]
- Conti N, Torricelli M, Voltolini C, Vannuccini S, Clifton VL, Bloise E, et al. Term histologic chorioamnionitis: a heterogeneous condition. Eur J Obstet Gynecol Reprod Biol. 2015;188:34-8. [Crossref] [PubMed]
- Oh KJ, Romero R, Park JY, Hong JS, Yoon BH. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J Perinat Med. 2019; 47(5):516-27. [Crossref] [PubMed] [PMC]
- Romero R, Kim YM, Pacora P, Kim CJ, Benshalom-Tirosh N, Jaiman S, et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med. 2018;46(6):613-30. [Crossref] [PubMed] [PMC]
- Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21-39. [Crossref] [PubMed]
- Morency AM, Bujold E. The effect of second-trimester antibiotic therapy on the rate of preterm birth. J Obstet Gynaecol Can. 2007;29(1):35-44. [Crossref]
- Galán Henríquez GM, García-Mu-oz Rodrigo F. Chorioamnionitis and neonatal morbidity: current perspectives. Res Reports Neonatol. 2017;7:41-52. [Crossref]
- Glaser K, Gradzka-Luczewka A, Szymankiewicz-Breborowicz M, Kawczynska-Leda N, Henrich B, Waaga-Gasser AM, et al. Perinatal Ureaplasma exposure is associated with increased risk of late onset sepsis and imbalanced inflammation in preterm infants and may add to lung injury. Front Cell Infect Microbiol. 2019;9:68. [Crossref] [PubMed] [PMC]
- Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, et al. The placental microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol. 2016;214(5):627.e1-627.e16. [Crossref] [PubMed] [PMC]
- Vancutsem E, Faron G, Foulon W, Naessens A. Genital tract colonization with Ureaplasma spp. and its association with abnormal vaginal flora. J Med Microbiol. 2015;64(6):654-6. [Crossref] [PubMed]
- Mavort M, Ke?e D, Kotar T, Kmet N, Miljković J, ?oba B, et al. Ureaplasma parvum and Ureaplasma urealyticum detected with the same frequency among women with and without symptoms of urogenital tract infection. Eur J Clin Microbiol Infect Dis. 2015;34(6):1237-45. [Crossref] [PubMed]
- Romero R, Mazor M. Infection and preterm labor. Clin Obstet Gynecol.1988;31(3):553-84. [Crossref] [PubMed]
- Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652-83. [Crossref] [PubMed]
- Oh JW, Park CW, Moon KC, Park JS, Jun JK. The relationship among the progression of inflammation in umbilical cord, fetal inflammatory response, early-onset neonatal sepsis, and chorioamnionitis. PLoS One. 2019;14(11):e0225328. [Crossref] [PubMed] [PMC]
- McNamara MF, Wallis T, Qureshi F, Jacques SM, Gonik B. Determining the maternal and fetal cellular immunologic contributions in preterm deliveries with clinical or subclinical chorioamnionitis. Infect Dis Obstet Gynecol. 1997;5(4):273-9. [Crossref]
- Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C; Society for Pediatric Pathology, Perinatal Section, Amniotic Fluid Infection Nosology Committee. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6(5):435-48. [Crossref] [PubMed]
- Redline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015;213(4 Suppl):S21-8. [Crossref] [PubMed]
- Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012;17(1):20-5. [Crossref] [PubMed]
- Kim CJ, Yoon BH, Kim M, Park JO, Cho SY, Chi JG. Histo-topographic distribution of acute inflammation of the human umbilical cord. Pathol Int. 2001;51(11):861-5. [Crossref] [PubMed]
- Kim CJ, Yoon BH, Romero R, Moon JB, Kim M, Park SS, et al. Umbilical arteritis and phlebitis mark different stages of the fetal inflammatory response. Am J Obstet Gynecol. 2001;185(2):496-500. [Crossref] [PubMed]
- Hecht JL, Allred EN, Kliman HJ, Zambrano E, Doss BJ, Husain A, et al; Elgan Study Investigators. Histological characteristics of singleton placentas delivered before the 28th week of gestation. Pathology. 2008;40(4):372-6. [Crossref] [PubMed] [PMC]
- Corbett NP, Blimkie D, Ho KC, Cai B, Sutherland DP, Kallos A, et al. Ontogeny of toll-like receptor mediated cytokine responses of human blood mononuclear cells. PLoS One. 2010;5(11):e15041. [Crossref] [PubMed] [PMC]
- Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F,Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183(11):7150-60. [Crossref] [PubMed] [PMC]
- Stinson LF, Payne MS, Keelan JA. Placental and intra-amniotic inflammation are associated with altered fetal immune responses at birth. Placenta. 2019;85:15-23. [Crossref] [PubMed]
- Seong HS, Lee SE, Kang JH, Romero R, Yoon BH. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol. 2008;199(4):375.e1-5. [Crossref] [PubMed] [PMC]
- Galask RP, Varner MW, Petzold CR, Wilbur SL. Bacterial attachment to the chorioamniotic membranes. Am J Obstet Gynecol. 1984;148(7):915-28. [Crossref]
- Romero R, Sirtori M, Oyarzun E, Avila C, Mazor M, Callahan R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989;161(3):817-24. [Crossref]
- Musilova I, Andrys C, Drahosova M, Soucek O, Stepan M, Bestvina T, et al. Intraamniotic inflammation and umbilical cord blood interleukin-6 concentrations in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2016;30(8):900-10. [Crossref] [PubMed]
- Chiesa C, Pacifico L, Natale F, Hofer N,Osborn JF, Resch B. Fetal and early neonatal interleukin-6 response. Cytokine. 2015;76(1):1-12. [Crossref] [PubMed]
- Yoon BH, Romero R, Park JS, Kim M, Oh SY, Kim CJ, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000;183(5):1124-9. [Crossref] [PubMed]
- Mikołajczyk M, Wirstlein P, Adamczyk M, Skrzypczak J, Wender-Ożegowska E. Value of cervicovaginal fluid cytokines in prediction of fetal inflammatory response syndrome in pregnancies complicated with preterm premature rupture of membranes (pPROM). J Perinat Med. 2020;48(3):249-55. [Crossref] [PubMed]
- Romero R, Gomez R, Ghezzi F, Yoon BH, Mazor M, Edvin SS, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol. 1998;179(1):186-93. [Crossref]
- Sciaky-Tamir Y, Hershkovitz R, Mazor M, Shelef I, Erez O. The use of imaging technology in the assessment of the fetal inflammatory response syndrome-imaging of the fetal thymus. Prenat Diag. 2015;35(5):413-9. [Crossref] [PubMed]
- Mastrolia SA, Erez O, Loverro G, Di Naro E, Weintraub AY, Tirosh D, et al. Ultrasonographic approach to diagnosis of fetal inflammatory response syndrome: a tool for at-risk fetuses? Am J Obstet Gynecol. 2016;215(1):9-20. [Crossref] [PubMed]
- Christensen KK. Infection as a predominant cause of perinatal mortality. Obstet Gynecol. 1982;59(4):499-508.
- Agrawal V, Hirsch E. Intrauterine infection and preterm labor. Semin Fetal Neonatal Med. 2012;17(1):12-9. [Crossref] [PubMed] [PMC]
- Park H, Park KH, Kim YM, Kook SY, Jeon SJ, Yoo HN. Plasma inflammatory and immune proteins as predictors of intra-amniotic infection and spontaneous preterm delivery in women with preterm labor: a retrospective study. BMC Pregnancy Childbirth. 2018:18(1):146. [Crossref] [PubMed] [PMC]
- Yoon BH, Romero R, Moon JB, Shim SS, Kim M, Kim G, et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001;185(5):1130-6. [Crossref] [PubMed]
- Sung JH, Choi SJ, Oh SY, Roh CR, Kim JH. Revisiting the diagnostic criteria of clinical chorioamnionitis in preterm birth. BJOG. 2017;124(5):775-83. [Crossref] [PubMed]
- Sprong KE, Mabenge M, Wright CA, Govender S. Ureaplasma species and preterm birth: current perspectives. Crit Rev Microbiol. 2020;46(2):169-81. [Crossref] [PubMed]
- Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med. 2006;11(5):354-62. [Crossref] [PubMed]
- Jobe AH. Antenatal associations with lung maturation and infection. J Perinatol. 2005;25 Suppl 2:S31-5. [Crossref] [PubMed]
- Sarno L, Corte LD, Saccone G, Sirico A, Raimondi F, Zullo F, et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2019:1-10. [Crossref] [PubMed]
- Viscardi RM. Perinatal inflammation and lung injury. Semin Fetal Neonatal Med. 2012;17(1):30-5. [Crossref] [PubMed] [PMC]
- Park CW, Park JS, Jun JK, Yoon BH. Mild to moderate, but not minimal or severe, acute histologic chorioamnionitis or intra-amniotic inflammation is associated with a decrease in respiratory distress syndrome of preterm newborns without fetal growth restriction. Neonatology. 2015;108(2):115-23. [Crossref] [PubMed]
- Kallapur SG, Willet KE, Jobe AH, Ikegami M, Bachurski CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L527-36. [Crossref] [PubMed]
- Shi Z, Vasquez-Vivar J, Luo K, Yan Y, Northington F, Mehrmohammadi M, et al. Ascending lipopolysaccharide-induced intrauterine inflammation in near-term rabbits leading to newborn neurobehavioral deficits. Dev Neurosci. 2018;40(5-6):534-46. [Crossref] [PubMed]
- Rangon CM, Schang AL, Van Steenwinckel J, Schwendimann L, Lebon S, Fu T, et al. Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain Behav Immun. 2018;74:265-76. [Crossref] [PubMed]
- Shi Z, Ma L, Luo K, Bajaj M, Chawla S, Natarajan G, et al. Chorioamnionitis in the development of cerebral palsy: a meta-analysis and systematic review. Pediatrics. 2017;139(6):e20163781. [Crossref] [PubMed] [PMC]
- Gussenhoven R, Westerlaken RJJ, Ophelders DRMG, Jobe AH, Kemp MW, Kallapur SG, et al. Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. J Neuroinflammation. 2018;15(1):113. [Crossref] [PubMed] [PMC]
- Romero R, Espinoza J, Gonçalves LF, Gomez R, Medina L, Silva M, et al. Fetal cardiac dysfunction in preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2004;16(3):146-57. [Crossref]
- Vanderbroucke L, Doyen M, Lous ML, Beuchée A, Loget P, Carrault G, et al. Chorioamnionitis following preterm premature rupture of membranes and fetal heart rate variability. Plos One. 2017;12(9): e0184924. [Crossref] [PubMed] [PMC]
- Mitchell T, Macdonald JW, Srinouanpranchanh S, Bammler TK, Merillat S, Boldenow E, et al. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates. Am J Obstet Gynecol. 2018;218(4):438.e1-438.e16. [Crossref] [PubMed] [PMC]
- Di Naro E, Cromi A, Ghezzi F, Giocolano A, Caringella A, Loverro G. Myocardial dysfunction in fetuses exposed to intraamniotic infection: new insights from tissue Doppler and strain imaging. Am J Obstet Gynecol. 2010;203(5):459.e1-7. [Crossref] [PubMed]
- Tonni G, Rosignoli L, Cariati E, Martins WP, Miyague AH, Bruns RF, et al. Fetal thymus: visualization rate and volume by integrating 2D- and 3D-ultrasound during 2nd trimester echocardiography. J Matern Fetal Neonatal Med. 2016;29(14):2223-8. [Crossref] [PubMed]
- Kuban JD, Allred EN, Leviton A. Thymus involution and cerebral white matter damage in extremely low gestational age neonates. Biol Neonate. 2006;90(4):252-7. [Crossref] [PubMed]
- Ferber A, Minior VK, Bornstein E, Divon MY. Fetal "nonreassuring status" is associated with elevation of nucleated red blood cell counts and interleukin-6. Am J Obstet Gynecol. 2005;192(5):1427-9. [Crossref] [PubMed]
- Nakamura T, Hatanaka D, Kusakari M, Kashima K, Takizawa Y, Takahashi H, et al. Neonatal leukemoid reaction with fetal inflammatory response syndrome is associated with elevated serum granulocyte colony stimulating factor and interleukin-6. Tohoku J Exp Med. 2018; 244(2):145-9. [Crossref] [PubMed]
- Romero R, Savasan ZA, Chaiworapongsa T, Berry SM, Kusanovic JP, Hassan SS, et al. Hematologic profile of the fetus with systemic inflammatory response syndrome. J Perinat Med. 2011;40(1):19-32. [Crossref]
- Yoon BH, Kim YA, Romero R, Kim JC, Park KH, Kim MH, et al. Association of oligohydramnios in women with preterm premature rupture of membranes with an inflammatory response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol. 1999;181(4):784-8. [Crossref]
- Pan X, Zhang D, Nguyen DN, Wei W, Yu X, Gao F, et al. Postnatal gut immunity and microbiota development is minimally affected by prenatal inflammation in preterm pigs. Front Immunol. 2020;11:420. [Crossref] [PubMed] [PMC]
- Been JV, Lievense S, Zimmermann LJI, Kramer BW, Wolfs TGAM. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr. 2013;162(2):236-42.e2. [Crossref] [PubMed]
- Been JV, Rours IGIJG, Kornelisse RF, Lima Passos V, Kramer BW, Schneider TAJ, et al. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: effects on neonatal outcome in preterm infants. Am J Obstet Gynecol. 2009;201(6):587e1-8. [Crossref] [PubMed]
- Kim YM, Romero R, Chaiworapongsa T, Espinoza J, Mor G, Kim CJ. Dermatitis as a component of the fetal inflammatory response syndrome is associated with activation of Toll-like receptors in epidermal keratinocytes. Histopathology. 2006;49(5):506-14. [Crossref] [PubMed] [PMC]
- Yoon BH, Romero R, Jun JK, Maymon E, Gomez R, Mazor M, et al. An increase in fetal plasma cortisol but not dehydroepiandrosterone sulfate is followed by the onset of preterm labor in patients with preterm premature rupture of the membranes. Am J Obstet Gynecol. 1998;179(5):1107-14. [Crossref]
.: Process List