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ABSTRACT Objective: This paper conducts thorough simulation 

research to assess the effectiveness of ensemble learning techniques 
and logistics regression models for estimating propensity score val-

ues used at the matching weighting under different propensity score 

model scenarios and various treatment scenarios considered. Mate-

rial and Methods: This study underlines the significance and chal-

lenges of frequently disregarded overlap assumption. Offered 

method also is examined and focuses on the difficulties that non-
overlap entails for inference. Monte Carlo simulations are used to 

generate data sets to analyze the causal effect of meeting in order 

that illustrates alternative strategies and pertaining aspects when 

highlighting positivity violations. Results: Here simulation results 

are illustrated to compare matching weight method under various 
machine learning methods in terms of root mean squared error 

(RMSE), SE of the treatment effects, and bias. Some ensemble 

learning algorithms for estimating propensity score (PS) values 
have rigorously outperformed than using the logistics regression 

method with or without existing a violation of the positivity the 

assumption under the different estimation PS models and various 
treatment models. The most complex treatment scenario tends to 

produce better results as measured by the SE, RMSE and bias than 

the less complex treatment scenarios. Conclusion: The findings 
summarize the conditions under which one technique may be an-

ticipated to perform better than others without generalizing whether 

a method is always preferable to the other. 
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ÖZET Amaç: Bu makalede dikkate alınan farklı eğilim puanı mo-

deli senaryoları ve çeşitli tedavi senaryoları altında, eşleştirme 
ağırlıklandırılması metodunun kullanılan tahmini eğilim puan değer-

leri hesaplanması için topluluk öğrenme teknikleri ve lojistik regres-

yon modelinin etkinliğinin değerlendirmek için kapsamlı bir simülas-
yon çalışması yürütmektedir. Gereç ve Yöntemler: Bu çalışma, sık-

lıkla ihmal edilen örtüşme varsayımının önemini ve zorlukları vurgu-

lamaktadır. Önerilen yöntemin de değerlendirilmesi ve nedensel çıka-
rımlarda örtüşmeme durumunun getirdiği zorluklara odaklanmıştır. 

Pozitiflik varsayımını vurgulanmasında alternatif stratejileri ve ilgili 

yönleri tanımlamak için nedensel etkiyi analiz etmek için Monte 

Carlo simülasyonundan elde edilen veri setleri kullanılır. Bulgular: 

Buradaki simülasyon çalışmasının sonuçları, farklı makine öğrenimi 
yöntemleri altında eşleştirme ağırlıklandırılması metodunun kök orta-

lama kare hatası [root mean squared error (RMSE)], tedavi etkilerinin 

SE ve göreceli ön yargı ölçülerine dayalı karşılaştırma yapmak için 
gösterilmektedir. Farklı tahmin eğilim skoru [propensity score (PS)] 

modelleri ve birçok tedavi modelleri altından pozitiflik varsayımının 

ihlali olsun veya olmasın PS değerlerinin tahmin etmek için kullanı-
lan bazı topluluk öğrenme algoritmalarının, lojistik regresyon yönte-

minin kullanılmasından kesinlikle daha iyi performans göstermiştir. 

En karmaşık tedavi senaryosu, SE, RMSE ve yanlılıkla ölçüleri açı-
sından daha az karmaşık tedavi senaryolarına göre daha iyi sonuçlar 

üretme eğilimindedir. Sonuç: Bulgular kısmıyla bir yöntemin diğe-

rinden daha iyidir genelleştirmesini yapmadan, bir tekniğin diğerle-
rinden daha iyi bir performans göstermesinin beklenebileceğinin şart-

larıyla özetlenmektedir. 
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Observational research has contributed significantly to fields including public health, health econom-

ics, and medical science because of the unethical process and restricted access to databases in randomize 

control trials (RCTs). In order to decrease or eliminate the effects of confounding resulting from observed 

baseline factors in observational studies, applied researchers in the medical field are widely employing 

approaches based on the propensity score (PS). The PS estimates the probability that a treatment will be 

assigned based on observed baseline variables. Different PS based on the approaches has been studied to 

estimate causal inference in observational studies, such as matching, subclassification, inverse probability 

of treatment weighting (IPTW), and covariate adjustment. IPTW produces a reliable estimator of the aver-

age treatment effect (ATE) with the conditions of stable unit treatment value assumption (SUTVA), un-

confoundedness, and overlap when PS models are determined correctly.
1-11

 However, when the positivity 

assumption is violated, it can lead to incredibly high weights. In other words, a lack of overlap assumption 

happens when some individuals get treatment   ,  =1,..,n when PS values       are close to 0 and 1. Un-

fortunately, the existing violation of the overlap assumption indicates that IPTW estimators can be exces-

sively affected by a small number of extremely weighted observations, producing findings that are both 

biased and unstable. Researchers might not desire large weights because they would make determining the 

causes of events very difficult. Imbens and Rubin in 2015 state that this violation can happen for several 

reasons, including data limitations, a small sample size, incorrect PS model parameters, and incorrectly 

described relationships between the treatment/outcome and covariates.
12

 Some papers
 
present a summary 

of traditional PS methods that have been put forth in the literature for assessing causal effects in the pres-

ence of overlap assumption.
13-15

 Crump et al., Stürmer et al., Walker et al.
 
have proposed different trim-

ming methods, which are frequently employed to remedy positivity violations.
16-18

 Trimming method is 

the process of locating a subset of individuals that seems to fail the positivity assumption, eliminating 

them from the data set, and making inferences about the remaining population. However, the employment 

of trimming techniques to deal with positive violations raises several possible challenges. Firstly, exclud-

ing individuals who commit positive violations reduces the sample size, which raises the possibility of the 

impact estimate's variance rising. Additionally, there is a strong correlation between sample size and how 

frequently positive violations occur by random. As the sample size decreases, new practical positive viola-

tions may be introduced, relying on how trimming is carried out. Furthermore, limiting the sample might 

have a causal impact on a population of restricted interest. Lastly, it can be challenging to interpret the pa-

rameter predicted when the criteria used to limit the sample includes a summary of high dimensional var i-

ables.
12

 Despite the fact that trimming or traditional PS techniques may be suitable for structural viola-

tions, they are insufficient for actual violations of the positivity assumption. Researchers are prompted by 

this conflict to consider alternative intended samples for whom exposure impact might be more meaning-

fully and precisely explored in terms of bias, root mean squared error (RMSE), variance, or other meas-

ured metrics.  

Later, Li and Greene proposed Matching Weights (MW) have been presented as alternatives to 

IPTW for overcoming overlap concerns.
19

 They present the performance of pair-matching, inverse prob-

ability weight, double robust estimation, and matching weighting method that offers data analysts a new 

framework for determining whether the propensity model relies on the logistic regression is properly 

stated under the various simulation scenarios. There are some remarkable papers that employ the pe r-

formance of MW and other balance weight approaches in literature after it is proposed by.
19

 For exam-

ple, MW method (with or without other balance weights methods) using logistic regression for an est i-

mate of its PS values has been employed to compare the effectiveness of the bootstrap and asymptotic 

variance estimators, examined the performance of methods under the presence of overlap assumption, 

present extensive simulation under the violation of overlap assumption when having misspecified PS 

models scenarios.
20-22

 

The balancing weights are a generic class of PS weights, many of which could be employed for covari-

ate balance in observational studies, as I show out in this article. In spite of the potential benefits of MW, lit-
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tle is revealed regarding the comparative performance of the MW method in the literature. In the research 

area of new approach MW technique in the past decade, generating PS values are examined rely on the logis-

tics regression, super learner or Gradient Boosting Machine (GBM) algorithms using simulated data and re-

ported that super learner consistently gave the least biased results for implemented PSs on the MW 

method.
19-24

 However, those researchers, who make investigations on MWs methods, do not consider en-

semble learning techniques that thrive in classification and prediction processes and also, acquire favorable 

statistical properties. It is crucial to evaluate whether the efficiency of ensemble learning methods in PS es-

timation varies based on the data used. To fill this gap, the present work focuses on the ensemble learning 

techniques' ability to accurately estimate the causal effects of multi-component interventions. MW technique 

is then followed to decrease or eliminate bias between treatment groups. Finally, the performance of differ-

ent methodologies is then compared, and I draw conclusions on how to evaluate the clinical efficacy of 

treatments. 

    MATERIAL AND METHODS 

CAUSAL NOTATIONS 

The Rubin Causal Model (RCM), which presents the causal inference framework relying on the series of 

bibliography, was first used.
1,25,26

 Three main components are used to characterize the causal effects in 

RCM: assumed         observations             . This study considers a scenario in which there are n in-

dividuals, each of whom is indexed by        . In the binary case scenario, let T represents the observed 

treatment: T=1 for treatment group and T=0 for the control group and X is defined as a vector of observed 

variables. Rosenbaum and Rubin suggest two fundamental assumptions that enable proper causal inference.
1
 

The first assumption is the SUTVA which indicates the observed outcome as                    . The 

second assumption is a strong ignorable treatment assignment also known as exchangeability and then, this 

assumption is expressed as follows in mathematical notation:                   . The exchangeability as-

sumption assumes that exposure and outcomes, provided covariates, are independent. In other words, this 

assumption claims that all confounders are measured. Lastly, the overlap is called as the positivity assump-

tion:               . According to the positivity assumption, there is a non-zero probability that each 

individual gets either treatment. The positivity assumption is violated practically when some individuals ob-

tain treatment essentially often (or nearly never) when             0 and 1. Besides,            is 

called the PS,   . 

PS ESTIMATION ON ENSEMBLE LEARNING APPROACHES 

PS is proposed as “conditional probability of assignment to a particular treatment given a vector of observed 

covariates”.
1
 In many fields, there is growing attention to using the PS to compare treated and untreated 

groups relying on the set of variables and to decrease bias in estimating ATEs and average treatment effects 

on the treateds in observation studies.  

Logistic Regression is widely utilized as a parametric method to estimate PS value and its equation is 

written by  

                    
          

            
  

 
  

 
      

 
        (1) 

Unfortunately, logistics regression needs to make assumptions about variable selection, its functional 

forms and distributions, and well-defined interaction and higher-order terms. 

Bagging or Bootstrap Aggregation: It is proposed bootstrap aggregating, called bagging, which aims to 

lower the variance of a statistical learning process in order that increase the accuracy of predictions.
27

 Bag-

ging, one of the well-known tree-based learning techniques in machine learning. Moreover, the bagging 

method consists of two main steps: bootstrap and aggregating. 
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Random Forest (RF): Breiman proposes the random forest approach, which presents an automatic, non-

parametric technique for dealing with regression issues such as complicated interaction terms, nonlinear rela-

tionships between covariates, or both of several variables on the outcome.
27 

 

Bootstrapping: At the beginning of the 1990s, one of the oldest references to ensemble methods is 

Schapire's boosting approach, which described how “strong” classifiers can be created by linearly combin-

ing several poor ones by iteratively re-weighting training inputs. Boosting algorithm is a type of stage-

wise additive modeling, where the model is built so that each stage concentrates on fixing the errors of the 

preceding stage's model, with model weaknesses being measured by a loss function.
28,29

 There are many 

different types of boosting algorithms in literature: AdaBoost, GBM, Extreme gradient boosting 

(XGBoost). 

GBM: It is proposed a gradient boosting algorithm that constructs based on the stagewise additive mod-

els by iteratively fitting the main model with the gradient descent method. Even though RF basically takes 

the mean of all random ensemble’s learnings, the boosting technique incrementally accumulates new model 

estimates, which means that each new model training is dependent on the error of the whole ensemble 

formed up to that point.
30

 

XGBoost: XGBoost is introduced as an alternative of GBM that is one of the highest performing used 

for supervised learning.
31

 XGBoost, which offers parallel processing and boosting, is a scalable upgraded 

version of GBM.  

MW METHOD 

Li and Greene proposed the MW method as an alternative to 1:1 matching and IPTW to make more effec-

tive estimated treatment effects and reduce bias between treatment groups.
19

 Because extreme PSs cause 

produce large weights when these weightings are examined under the IPTW and matching method cases. 

Let f(x) represents the marginal probability of variables X in the sample that includes both treatment and 

control groups. Then, f(x)h(x) can be used to express the density of the target population when h(x) is a 

predetermined tilting function of x describing the target population. If a specific treatment group is inter-

ested (i.e., it can be the treatment or control group when two group case is considered), the marginal den-

sity function for the t group symbolizes                  . Each treatment group is expressed as 

               and               , respectively. The relevant weights       are described for each 

treatment group as: 

        
        

        
 

    

    
                  (2) 

        
        

            
 

    

        
                 (3) 

According to its definition, the MW is 
                

    
for a treated group and 

                

      
 for an un-

treated group. Thus, MW is formulated for each subject as: 

   
                

                 
          (4) 

The MW estimator is defined as  

   
       

 
   

     
 
   

 
           

 
   

         
 
   

         (5) 
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PS, matching weighting, and treatment effects are simultaneously estimated by resolving the below-

estimating equations regarding to    
 
  

 
     

  
 as described in Lunceford and Davidian's methodology: 

          
     

                 
 
 

                     
 
 

        

  
          (6) 

where    is defined relying on the   as           . According to equation (6), first equation is corresponded 

to  
 
 

         

       
, while second equation is corresponded to  

 
 

             

           
. Then, third equation is gener-

ated based on the PS model for   (i.e., equation (1)). Thus, MW estimator might define as     
 
  

 
.This 

technique's estimator represents M-estimator with an asymptotically normal distribution because of having 

unbiased with corresponding to each equation of (6).
4
 

SIMULATION DESIGN 

Predictors generation: This paper used some part of simulations that investigated the efficacy of several 

scenarios for application with MW as the foundation for the structure of Monte Carlo simulations.
32,33

 As in the 

previous study, the data sets were generated with ten variables (  -   ), dichotomous treatment assignment (T) 

with pr(T)=0.5, and a dichotomous outcome with pr(Y)=0.02. However, this paper is considered to added 

seven more covariates (i.e.,    -   ), which express as distractor variables, on previous work. I generated the 

seventeen covariates   -    for each of N individual. Standard normal distributions are used as the continuous 

variables and dichotomized forms of standard normal distribution parameters are used as the binary variables. 

  ,   ,   ,    ,    ,    ,     covariates are drawn from a standard normal distribution, while   ,   ,   ,   , 

  ,   ,    ,    ,    ,     covariates represent as dichotomized variables. Secondly, some weak or strong cor-

relations between covariates are constructed such as                ,               ,            

   ,               ,                 ,                 ,                 ,              

   . To sum up,   -   are associated with both treatment and outcome assignments even though    -    are 

hold any association with neither treatment nor outcome assignment. In addition, some of distractor variables 

only are constructed weak or strong association with main covariates. 

Treatments generation: Four scenarios of the PS model was employed to create treatment assignments. 

All four scenarios have the formula of           
 

                        
, where each scenario is a func-

tion of the confounding factors that determined how complex the relationship between all factors and treat-

ment assignment are. The factor          and   factor takes value of 1. There are four versions for creating 

treatment assignments as follows: 

            =       +    +    +    +    +    +     (main effects terms) 

            =       +    +    +    +    +    +    +    
 +    

 +      
 (main effects terms 

plus three quadratic terms) 

            =       +    +    +    +    +    +    +       +      +        +      + 

      +         +        +      +       +       (main effects terms plus ten interaction terms) 

            =       +    +    +    +    +    +    +       +      +        

+      +        +         +        +      +       +      +    
 +    

 +    
  (main effects 

terms plus three quadratic terms plus ten interaction terms) 

The parameters    
 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
                                       . Then, a uni-

form distribution is used to create a random value ranging from 0 and 1. The value of T is adjusted to be 1 if 
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the estimated PS value P(T=1|X) is greater than the randomly produced uniform value. Otherwise, it is ad-

justed as 0 if randomly generated uniform values are larger than the estimated PS values. To study a scenario 

like a two-arm non-randomized controlled trial, I intended to expose around 50 percent of the individuals to 

the treatment. The value of     , which is taken place generating treatment scenarios, is decided to assign 

the treatment to roughly half of the subjects (i.e., 50 percent treatment). However, the value of  
 
   is set 

to generate 20 percent of the treated subject while the value of  
 
    is set to provide that treatment con-

sisted of approximately 80 percent of treated individuals. Thus, I create low, middle, and strong treatment 

probability across four treatment scenarios (i.e., treatment A, treatment B, treatment C, and treatment D). 

Thus, I obtain low, middle, and strong treatment probability across four treatment scenarios (i.e., treatment 

A, treatment B, treatment C, and treatment D). 

Outcome generation: A scenario of the PS model is used to obtain outcome assignments. The outcome 

scenario has the formula of Pr Y    T    
e p scenario out  T 

   e p scenario out  T  
, where version of the outcome is defined 

as a function of complex model and also, true treatment   is represented by -0.4 meanwhile different treat-

ment scenarios T is replaced in place. 

               +   +    +    +    +    +    +    +     (main effect terms) 

The parameters                         =                                            . 

Moreover, intercept term    is set to be constant value with -3.85, while true treatment effect    set to 

be 0.4 value. Like generating treatment assignment, the value of outcome Y is assigned to be 1 if Pr Y  

  T    value is larger than the randomly produced uniform value. Otherwise, the outcome Y is set to be 0. 

The propensity estimation strategies: The goal of the Monte Carlo simulation is to ascertain which PS 

models are best at balancing the seventeen variables between treatment and outcome assignments. So, five 

PS model versions are taken into consideration, with each having a different selection of covariates used in 

the model. In each of the treatment and outcome cases, the functional version of the PS generating model 

consists of the factors listed below.
32

 

The main PS model (model 1):          covariates, which relate to either outcome or treatment as-

signments, are used. 

The true PS model (model 2):        covariates, which have a direct relationship to treatment assign-

ments, are used. 

The confounder model (model 3):       and        covariates, which are associated with the out-

come assignments, are used. 

The true confounder model (model 4):       covariates, which relate with the treatment and outcome 

assignments, are used. 

The full model (model 5): All covariates (e i        ) are used. 

Evaluation metrics for the simulation: First evaluation metric of simulation is the average standard er-

ror, which is the mean of a given ATE's 1000 standard errors, i.e.,  

The mean SE  =
 

    
 SE i
    
i   

Second metric across the simulation is the RMSE that denoted taking square root of means square error 

for each estimator, i.e.,   

RMSE   
 

    
  ATE 

i  ATE 
 

    

i  
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where estimated average treatment effect ATE  and true treatment exposure ATE are defined. Last used met-

ric is bias, which is defined as the difference between the mean estimated treatment effect and the true effect 

set at -0.4, i.e.,  

Bias  
 

    
  ATE 

i  ATE 

    

i  

 

This study generated 1000 datasets with 1000 individuals in each simulation. 

    RESULTS 

Monte Carlo simulation is used to assess how the variables selection for different PS model scenarios (i.e., 

Model-1, Model-2, Model-3, Model-4 and Model-5) across treatment (i.e., Treatment A, Treatment B, 

Treatment C and Treatment D) against considering different probabilities of each treatment scenario, and 

outcome scenarios impact the consistency of the MW treatment and control individuals. The average of es-

timated SE(SE     ), bias and RMSE provide as summaries of the findings.  

 

 

TABLE 1: Performance of SE and RMSE of Logistic Regression, Bagging, Random Forest, GBM, XGBoost propensity score methods 
across all propensity score models (i.e., Model1-5) in all treatment versions (i.e., Treatment A-D), where are P(Treatment)  0.5. 
 

 
Treatment A Treatment B Treatment C Treatment D 

SE RMSE SE RMSE SE RMSE SE RMSE 

L
o

g
is

ti
c 

 

R
eg

re
ss

io
n

 

Model 1 2.275 0.563 1.413 0.553 0.582 0.547 0.512 0.165 

Model 2 2.226 0.564 1.384 0.551 0.548 0.547 0.482 0.164 

Model 3 1.054 0.548 0.897 0.550 0.561 0.547 0.494 0.165 

Model 4 1.033 0.547 0.887 0.548 0.521 0.547 0.457 0.164 

Model 5 2.415 0.564 1.490 0.555 0.630 0.548 0.557 0.165 

B
ag

g
in

g
 

Model 1 0.981 0.565 1.224 0.559 0.656 0.546 0.570 0.168 

Model 2 0.951 0.565 1.198 0.563 0.500 0.546 0.439 0.164 

Model 3 0.840 0.553 0.952 0.554 0.649 0.548 0.564 0.167 

Model 4 0.798 0.550 0.914 0.553 0.495 0.546 0.434 0.164 

Model 5 1.059 0.560 1.283 0.562 0.758 0.551 0.663 0.173 

R
an

d
o

m
 

F
o

re
st

 

Model 1 0.895 0.557 1.117 0.552 0.621 0.546 0.540 0.165 

Model 2 0.909 0.555 1.135 0.548 0.592 0.547 0.519 0.164 

Model 3 0.784 0.549 0.889 0.547 0.624 0.547 0.545 0.165 

Model 4 0.710 0.544 0.760 0.543 0.518 0.547 0.454 0.164 

Model 5 0.858 0.553 1.057 0.551 0.612 0.546 0.535 0.165 

G
B

M
 

Model 1 1.106 0.561 1.489 0.568 0.529 0.549 0.455 0.166 

Model 2 1.111 0.566 1.542 0.564 0.518 0.548 0.443 0.164 

Model 3 0.777 0.545 0.901 0.550 0.529 0.549 0.454 0.167 

Model 4 0.773 0.549 0.886 0.548 0.511 0.549 0.436 0.164 

Model 5 1.081 0.566 1.445 0.565 0.530 0.548 0.458 0.165 

X
G

B
o

o
st

 

Model 1 0.901 0.570 1.080 0.555 0.757 0.546 0.664 0.172 

Model 2 0.901 0.571 1.079 0.556 0.553 0.546 0.484 0.167 

Model 3 0.847 0.557 1.018 0.549 0.760 0.549 0.665 0.172 

Model 4 0.837 0.553 1.017 0.551 0.534 0.547 0.469 0.166 

Model 5 0.906 0.570 1.086 0.558 0.802 0.547 0.702 0.175 
 

SE: Standard error; RMSE: Root mean squared error; GBM: Gradient Boosting Machine; XGBoost: Extreme gradient boosting 
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Table 1 shows the SE      and the RMSEs for various simulation scenarios when Pr(T) 0.5 is considered gen-

erating treatment scenarios. The SE      over Model-1 in the logistic regression model is 2.275 for Treatment A, 

1.413 for Treatment B, 0.582 for Treatment C, and 0.512 for Treatment D, while the SE      over model 4 in the 

logistic regression model is 1.033 for Treatment A, 0.887 for Treatment B, 0.521 for Treatment C and 0.457 for 

Treatment D. Similarly, the SE      from logistic regression models’ method are nearly  .  times higher than the 

ones from the RF methods across Model-1, Model-2, and Model-5 under Treatment A scenario. However, the 

difference in the SE     s in linear treatment scenarios (i.e., Treatment A) between methods have been more than 

the ones in complex non-linear treatment scenarios (i.e., Treatment D). In other words, among of models across 

methods, there is nearly no significant difference in terms of the SE     s  and the RMSEs under the Treatment D. 

Overall, the findings state that logistic regression runs a poor performance than using any ensemble learning 

methods with linear treatment scenarios (i.e., Treatment-A) when there is no violation of the positivity assump-

tion. RF yields nearly lowest the SE      and the RMSE in all scenarios but the SE for logistic regression is highest 

in Treatment A, while GBM hold the lowest SE      values in Treatment D across all models. Thus, it concludes 

that it significantly is important whether the treatment scenario is generated based on the linear or not linear 

forms for logistics regression than being ensemble learning.  

 

TABLE 2: Performance of SE and RMSE of Logistic Regression, Bagging, Random Forest, GBM, XGBoost propensity score methods 
across all propensity score models (i.e., Model1-5) in all treatment versions (i.e., Treatment A-D), where are P(Treatment)  0.8. 
 

 
Treatment A Treatment B Treatment C Treatment D 

SE RMSE SE RMSE SE RMSE SE RMSE 

L
o

g
is

ti
c 

 
R

eg
re

ss
io

n
 

Model 1 272.56 2.309 157.66 1.872 1.915 1.503 1.162 0.841 

Model 2 250.98 2.308 144.49 1.870 1.710 1.494 1.034 0.834 

Model 3 145.75 2.334 89.094 1.870 1.746 1.495 1.066 0.835 

Model 4 135.63 2.334 88.577 1.869 1.502 1.486 0.916 0.829 

Model 5 333.33 2.308 162.13 1.870 2.253 1.524 1.357 0.853 

B
ag

g
in

g
 

Model 1 73.426 2.255 60.833 1.811 2.136 1.501 1.264 0.857 

Model 2 68.391 2.258 60.798 1.812 1.329 1.475 0.819 0.826 

Model 3 67.813 2.266 39.854 1.819 2.084 1.504 1.243 0.867 

Model 4 59.554 2.277 37.998 1.824 1.298 1.473 0.803 0.826 

Model 5 86.777 2.238 61.828 1.803 2.531 1.456 1.518 0.850 

R
an

d
o

m
 

F
o

re
st

 

Model 1 92.499 2.342 78.252 1.857 1.932 1.507 1.169 0.844 

Model 2 96.213 2.341 78.591 1.852 2.242 1.512 1.340 0.844 

Model 3 75.796 2.341 50.527 1.860 1.973 1.508 1.183 0.844 

Model 4 63.224 2.319 39.255 1.824 1.525 1.484 0.932 0.827 

Model 5 91.015 2.340 69.786 1.855 1.816 1.503 1.107 0.842 

G
B

M
 

Model 1 90.118 2.334 60.829 1.849 1.393 1.469 0.853 0.821 

Model 2 79.849 2.341 53.896 1.844 1.420 1.459 0.867 0.820 

Model 3 59.477 2.306 35.304 1.838 1.386 1.466 0.850 0.822 

Model 4 63.569 2.326 36.328 1.842 1.423 1.458 0.852 0.820 

Model 5 69.492 2.304 58.915 1.835 1.389 1.464 0.848 0.829 

X
G

B
o

o
st

 

Model 1 51.239 2.281 38.338 1.813 1.732 1.504 1.057 0.841 

Model 2 51.860 2.281 38.242 1.816 1.507 1.479 0.926 0.829 

Model 3 48.689 2.284 34.187 1.856 1.729 1.505 1.059 0.841 

Model 4 48.436 2.284 34.173 1.853 1.448 1.475 0.888 0.826 

Model 5 50.453 2.275 38.072 1.812 1.729 1.518 1.060 0.856 
 

SE: Standard error; RMSE: Root mean squared error; GBM: Gradient Boosting Machine; XGBoost: Extreme gradient boosting 
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The SE      and RMSE as the treatment modeled association between exposure and covariate gets less com-

plex, ensemble learning techniques (bagging, RF, GBM, and XGBoost) tended to yield less values than us-

ing logistic regression across all PS models versus all treatment scenarios when the violation of positivity 

assumption is considered in Table 2. In addition, there is a huge decreasing trend in SE      and RMSEs from 

Treatment-A to Treatment-D in all methods across all models. When considering more complex treatment 

scenarios (i.e., Treatment-D) in Table 2, GBM performs less SE      than the rest of the three ensemble learning 

methods and logistic regression methods across all PS models. Looking at Table 3, the SE     s for logistic re-

gression were remarkably higher for all treatment scenarios and across all five model scenarios in Treatment 

A. Like Table 2, there are remarkably decreasing intention for SE      and RMSEs from Treatment A to Treat-

ment D, while the performance of GBM is generally smaller SE      in scenario of Treatment D with a SEs       of 

0.658,0.668,0.658,0.677 and 0.659 across PS models (i.e., Model 1-5) compared to the rest of methods under 

existing of positivity violation in Table 3. 

 

 

TABLE 3: Performance of SE and RMSE of Logistic Regression, Bagging, Random Forest, GBM, XGBoost propensity score methods 
across all propensity score models (i.e., Model1-5) in all treatment versions (i.e., Treatment A-D), where are P(Treatment)  0.2. 
 

 
Treatment A Treatment B Treatment C Treatment D 

SE RMSE SE RMSE SE RMSE SE RMSE 

L
o

g
is

ti
c 

 
R

eg
re

ss
io

n
 

Model 1 319.44 2.585 174.2 2.42 1.001 0.500 0.830 0.106 

Model 2 314.21 2.581 185.2 2.42 0.917 0.495 0.764 0.099 

Model 3 121.57 2.577 64.7 2.35 0.935 0.493 0.776 0.103 

Model 4 116.53 2.574 62.9 2.35 0.831 0.488 0.695 0.097 

Model 5 361.90 2.589 201.2 2.43 1.160 0.512 0.955 0.122 

B
ag

g
in

g
 

Model 1 83.371 2.558 68.5 2.32 1.098 0.519 0.893 0.148 

Model 2 80.355 2.563 72.5 2.33 0.744 0.485 0.626 0.092 

Model 3 72.541 2.558 60.7 2.31 1.077 0.508 0.882 0.147 

Model 4 66.417 2.561 57.9 2.32 0.730 0.484 0.617 0.091 

Model 5 94.664 2.550 75.7 2.31 1.313 0.520 1.071 0.159 

R
an

d
o

m
 

F
o

re
st

 

Model 1 93.686 2.585 76.5 2.35 1.010 0.501 0.839 0.121 

Model 2 107.01 2.600 80.6 2.35 1.142 0.508 0.949 0.117 

Model 3 75.688 2.588 71.2 2.36 1.035 0.497 0.862 0.123 

Model 4 67.205 2.592 52.7 2.34 0.848 0.484 0.713 0.096 

Model 5 86.825 2.586 77.7 2.36 0.979 0.503 0.818 0.127 

G
B

M
 

Model 1 93.849 2.590 71.8 2.35 0.787 0.497 0.658 0.103 

Model 2 72.248 2.603 79.8 2.35 0.793 0.490 0.668 0.096 

Model 3 64.384 2.596 50.8 2.35 0.785 0.496 0.658 0.099 

Model 4 54.739 2.592 48.9 2.35 0.797 0.486 0.677 0.099 

Model 5 99.183 2.613 92.9 2.36 0.784 0.499 0.659 0.102 

X
G

B
o

o
st

 

Model 1 63.386 2.593 55.0 2.37 0.987 0.512 0.837 0.136 

Model 2 59.796 2.579 51.1 2.35 0.861 0.496 0.736 0.104 

Model 3 63.808 2.595 56.4 2.33 0.986 0.513 0.838 0.135 

Model 4 64.916 2.594 56.4 2.33 0.828 0.487 0.702 0.100 

Model 5 63.028 2.594 55.9 2.37 0.996 0.520 0.849 0.152 

 

SE: Standard error; RMSE: Root mean squared error; GBM: Gradient Boosting Machine; XGBoost: Extreme gradient boosting 
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In principle, the plots of the bias throughout all methods reveal that the findings were comparable under 

the various PS estimating strategies as seen in Figure 1. 
 

 
 

FIGURE 1: Performance of Bias of Logistic Regression, Bagging, Random Forest, GBM, XGBoost propensity score methods across all propensity score 

model scenarios (i.e., Model1-5) in all treatment versions (i.e., Treatment A-D), where are P(Treatment) 0.5. 

GBM: Gradient Boosting Machine; XGBoost: Extreme gradient boosting. 

 

When treatment scenarios and PS model complexity were extremely low in terms of comparing bias 

(i.e., Treatment D and Model-5), bagging ad RF techniques outperforms the bootstrapping techniques and 

logistic regression method. Overall, less complex treatment scenarios (Treatment-A-B-C) are more likely to 

provide remarkably large biases estimates in all model scenarios across all methods. 

    DISCUSSION 

Most statistical software might be used to conduct matching weighting, making it generally available to both 

statisticians and non-statisticians.
19,34

 The purpose of this study is to emphasize thing: the scientist's require-

ment to adhere to an estimate strategic plan in which the estimand is properly specified before the estimation 
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method is adopted. Even though researchers rapidly implement reliable PS estimates based on the logistics 

regression, and the super learner to use them within matching weighting method each with its advantages 

and limitations, there is no assessment implementation process of ensemble learning approaches to estimate 

PS before applying matching methods.
21-24,34

 As result, when choosing a method, researchers may need to 

consider the complexity of the PS estimation model, the complexity of the generating treatment scenarios 

and under the violation of positivity assumption.
22,35

 Along with these recommendations, I also offer a data-

analytic methodology for selecting between the logistic regression and ensemble learning approaches. 

    CONCLUSION 

The estimated PS based on the different ensemble learning method and logistics regression was used to de-

termine whether the assumptions made when employing MW are sufficient for obtaining accurate causal in-

ference. I outlined a through set of diagnostics to evaluate if weighting sample by matching weighting pro-

vided resulted in a sample where distribution of observed baseline variables was the same for treatment and 

control individuals. 

 Ensemble learning techniques (bagging, RF, GBM, and XGBoost) tended to yield less the mean SE 

and RMSE than the logistic regression whatever the different probability generating of treatment across the 

four treatment models was considered. 

 When the resulted are review from less complex treatment model (i.e., Treatment A) to complex 

treatment model, the resulted of SE and RMSE exhibit less values across same PS models under the same 

condition of the probability of treatment values. 

 If positivity assumption was violated (i.e., in Table 2 and Table 3), all models across all treatment 

model scenarios illustrated that there was explosion the resulted of SE and RMSE for logistic regression un-

der the linear treatment scenario (i.e., Treatment-A). 
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