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ABSTRACT Objective: The aim of this study is to determine which 

variables to include in the model and to examine how successful the 

model estimation is with the Least Angle Regression (LAR), Least Ab-

solute Shrinkage Selection Operator (LASSO) and Elastic Net (EN) 
regression methods, which are alternatives to unbiased methods. Mate-

rial and Methods: In the case of multicollinearity in multiple linear 

regression analysis, LAR, LASSO and EN Regression are the most 

commonly used biased estimator methods in the literature. In this study, 

the variables that LAR, LASSO and EN regression methods, which are 

among the biased methods, take in model selection and their model pre-

diction success are compared. For this purpose, data sets were generated 

in different scenarios in R program. The results obtained after the data 
sets produced at the end of the simulation with standard normal distribu-

tion, sample sizes n=50, n=100, n=200, number of independent varia-

bles p=16, p=18, p=20 and correlation coefficients r=0.10; r=0.60; 

r=0.90 were recorded. Results: Model predictions of the methods were 

recorded in the study results. Which variables the biased estimator 

methods include in the model and their model prediction success are 

compared. While the model predictions of the LAR and LASSO meth-

ods were close to each other, the EN regression method differed in 
model prediction. When analyzed in terms of Mean Square Error (MSE) 

and Coefficients of Determination, close values were observed. Conclu-

sion: While model prediction success is high in data sets with low sam-

ple size, model prediction success decreases and MSE values increase 

when the sample size increases gradually. For this reason, it has been 

observed that these methods are more useful and provide better model 

prediction in cases where there is a multicollinearity problem in the data 
sets and in scenarios where the sample size is small. 
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ÖZET Amaç: Bu çalışmanın amacı, hangi değişkenlerin modele dâhil 

edileceğini belirlemek ve yansız yöntemlere alternatif olan En Küçük 

Açı Regresyonu [Least Angle Regression (LAR)], En Küçük Mutlak 

Büzülme Seçim Operatörü [Least Absolute Shrinkage Selection 
Operator (LASSO)] ve Elastik Ağ [Elastic Net (EN)] regresyon yöntem-

leri ile model tahmininin ne kadar başarılı olduğunu incelemektir. Ge-

reç ve Yöntemler: Çoklu doğrusal regresyon analizinde, çoklu bağlantı 

sorununun (Multicollinearity) ortaya çıkması durumunda bu yanlı tah-

min edici yöntemlerden LAR, LASSO ve EN Regresyonu literatürde en 

çok kullanılan yöntemlerdir. Bu çalışmada, yanlı yöntemlerden olan 

LAR, LASSO ve EN regresyon yöntemlerinin model seçiminde hangi 

değişkenleri aldığı ve model tahmin başarıları karşılaştırılmıştır. Bu 
amaçla R programında farklı senaryolarda veri setleri üretilmiştir. Stan-

dart normal dağılıma sahip, örnek genişlikleri n=50, n=100, n=200, 

bağımsız değişken sayıları p=16, p=18, p=20 ve korelasyon katsayıları r 

=0,10; r=0,60; r=0,90 olacak biçimde yapılan simülasyon sonunda üreti-

len veri setlerinin ardından elde edilen sonuçlar kaydedilmiştir. Bulgu-

lar: Çalışma sonuçlarında yöntemlerin model tahminleri kaydedilmiştir. 

Yanlı tahmin edici yöntemlerin modele hangi değişkenleri aldığı ve 

model tahmin başarıları karşılaştırılmıştır. LAR ve LASSO yöntemleri-
nin model tahminleri birbirine yakınken, EN regresyon yöntemi, model 

tahmininde farklılık göstermiştir. Hata Kareler Ortalaması (HKO) ve 

Belirtme Katsayıları ile incelendiğinde ise birbirlerine yakın değerler 

gözlenmiştir. Sonuç: Örnek genişliği düşük olan veri setlerinde model 

tahmin başarısı yüksek iken, örnek genişliğinin giderek arttığı durum-

larda model tahmin başarısı azalmakta, HKO değerleri artmaktadır. Bu 

sebeple veri setlerinde çoklu bağlantı sorunu olduğu durumda ve örnek 
genişliğinin küçük olduğu senaryolarda bu yöntemlerin daha kullanışlı 

olduğu ve daha iyi model tahmini yaptığı görülmüştür.  
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Regression analysis is used in clinical studies to determine the relationship between 2 or more inde-

pendent variables and a dependent variable that have a cause-and-effect relationship and to make predictions 

or forecasts on the topic based on this relationship. The primary aim of regression analysis is to develop the 

predictive model that explains the dependent variable with the fewest possible variables.
1
 

In clinical studies, interpreting the model becomes challenging when there are a large number of inde-

pendent variables. In such cases, variable selection must be performed to identify the best model with fewer 

variables. While selecting variables, the relationship between independent variables is the most critical as-

pect to consider. One of the most important assumptions of multiple linear regression is the absence of rela-

tionships among the independent variables. If this assumption is violated, multicollinearity arises. In the case 

of multicollinearity, models estimated using the Ordinary Least Squares (OLS) method lead to erroneous re-

sults.
2
 To address this problem, shrinkage estimation methods, which are biased estimators, have been pro-

posed as an alternative to OLS.
3
 Among these methods, the most commonly used are Ridge Regression, 

Least Angle Regression (LAR), Least Absolute Shrinkage and Selection Operator (LASSO), and Elastic Net 

(EN) regression. 

Although penalized regression methods are biased estimators, they are used as alternatives to unbiased 

estimation methods due to their ability to meet theoretical expectations and reduce variance.
4
 Another func-

tion of these methods is to perform variable selection. While estimating the model, these methods exclude 

independent variables that do not explain the dependent variable, thus performing variable selection. Ridge 

Regression, one of the penalized regression methods, does not perform variable selection.
5 

It includes all in-

dependent variables in the dataset in the model. For this reason, the Ridge Regression method is not ad-

dressed in this study. 

The 1
st
 aim of this study is to determine which variables are included in the model by the LAR, LASSO, 

and EN regression methods, which are alternatives to unbiased methods. The second aim is to evaluate the 

coefficients of the included variables and the success of the model estimation using the Coefficient of De-

termination (R
2
) and the Mean Squared Error (MSE). 

    MATERIAL AND METHODS  

LEAST ANGLE REGRESSION  

The LAR method was first proposed by Efron et al. as a method that can be used for variable selection in 

linear models. The LAR method selects the xj variable with the highest absolute correlation among all the 

independent variables in the dataset. This xj performs a simple linear regression with the dependent variable 

y. Then, it initiates an algorithmic process to select the other independent variables according to a geometric 

order. This method applies as many steps as the number of variables and forms a model with the variables 

obtained at the end of n steps to estimate parameters.
6
 

The LAR method starts with a model containing no variables. Similar to forward selection methods, it 

begins the algorithm process with the independent variable xj that has the highest correlation with the de-

pendent variable. This xj variable takes a large step in the direction of the residuals (y-ŷ) with the highest 

correlation and calculates the βj1 coefficient. The algorithm stops when it finds another variable xj2 with the 

highest correlation with the residuals, just as it did with xj1.The second variable xj2 is included in the active 

model.
7
 The coefficients of these included variables are adjusted together to maintain and reduce their corre-

lations. At this stage, the LAR algorithm diverges from other methods. Instead of continuing in the direction 

of the xj1 variable alone, it proceeds in an angular direction that balances xj1 and xj2. The algorithm continues 

in this equal-angle direction until it finds a 3
rd

 independent variable that has an equal correlation with the re-

siduals as the vector formed by xj1 and xj2. 
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When there are 2 independent variables, the logic of the LAR method, as shown, is that    is the projec-

tion of y onto L (x1, x2). The LAR procedure starts with   
 
=0 (It represents the dependent variable value of 

the LAR estimator when the model contains no variables). The residual vector   1-  1 (  1 represents the value 

of the dependent variable estimated in the 1
st
 step) will have a stronger correlation with x1 than x2. For this 

reason, the LAR estimation is   1=  0+  1x1 . Here,    1 is chosen such that the angle between x1 and x2 is bi-

sected by   2 -   1. From this,   2=  1+  1 u2 emerges, where u2 is the angle bisector. The equality   2=  2 holds 

only when there are two independent variables. 

In the LAR method, the algorithm increases the β estimates in each step to remain close to the β esti-

mates predicted by OLS. The objective of this method is: 

min{e
’ 
e+β}         (1) 

Since LAR is a penalized regression method, it aims to minimize the sum of squared errors using a pen-

alty parameter, denoted by  . 

LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR  

Although OLS estimates yield high prediction accuracy, they exhibit high variance, especially in cases of 

multicollinearity where they become insufficient.
8
 OLS estimators often produce predictions with low bias 

but high variance. Although Ridge Regression is a technique developed to enhance OLS estimates, it com-

plicates interpretability. As an alternative, Tibshirani introduced the LASSO method.
9
 

Let xj represent the independent variables for j=1,2,3,…, m; yi represent the dependent variable and m 

denote the number of independent variable. Multiple linear regression is expressed as: 

µ=β0+    
   j βj) (µ, the value predicted by the model for the dependent variable)    (2) 

subject to: 

   
   i=0,    

   j=0),     
   j

2
=1), j=1,2,…….,m     (3) 

The regression coefficients of the independent variable vectors (β 1, β 2, β 3, …, β m) form the estimate vec-

tor    . 

  =    
   j β j)=Xβ    [Xnxm=(x1, x2, x3, …, xm)]       (4) 

The total sum of squared errors is given by:  

S(β )=||y-  ||
2
=       

   j)
2
         (5) 

If the absolute form of β is denoted as T(β ), then: 

T(β )=  β   
            (6) 

In the above equation, T(β ), represented by , is the penalty (or tuning) parameter in the LASSO 

method. Thus, LASSO aims to solve the problem: 

  β   
   <          (7) 

by minimizing: 

argminβ     
   i  β0       

   jβj))
2 

       (8) 

The LASSO estimator is defined as:
10
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β LASSO
 = argminβ {     

   i  β0       
   jβj))

2
 +    β   

   }    (9) 

LASSO is a method that constructs a model by shrinking some coefficients toward zero and setting oth-

ers exactly to zero. Its primary advantage lies in the quality of its model estimation. By reducing or eliminat-

ing some coefficients, it decreases variance. 

As a penalized regression method, LASSO differs from the LAR method by combining the penalty pa-

rameter with  β  instead of β. The objective of this method is formulated as: 

min{e
’ 
e +  β } (e, represents the prediction errors of the model)   (10) 

Although LAR and LASSO are closely related, LAR performs the calculations in a single step, making 

it faster. However, LASSO’s disadvantage is its lack of robustness in cases of strong multicollinearity. When 

the number of independent variables exceeds the sample size, it selects at most as many variables as the 

sample size. To address this limitation, the EN regression method was proposed.
11

 

ELASTIC NET REGRESSION 

EN regression is another penalized regression method proposed by Zou and Hastie. As in other penalized 

regression techniques, it performs variable selection and estimates coefficients for independent vari-

ables.
12

 

The EN regression method estimates the model by applying the penalty parameters of both Ridge Re-

gression and LASSO regression. It combines both methods to create a model. It tends to minimize the coef-

ficients by applying penalties to the coefficients, as in Ridge regression, and gives a model estimation that 

can be more efficient by selecting variables, as in LASSO regression.
13

 

In this method, let xj represent the independent variables j=1,2,3,…,m and yi denote the dependent vari-

able. 

   
   i=0   ,     

   j=0)   ,     
   j

2
=1),  j=1,2,3,…, m                    (11) 

The regression coefficients β m determine   .  

The total sum of squared errors is given by: 

S(β )=||y-  ||
2
=       

   j)
2
        (12) 

Elastic Net aims to estimate the model as follows: 

β ENET 
=|y-Xβ|

2
+1|β|1+2|β|

2
         (13) 

In Equation (13), 

the term 1 |β|1 represents the LASSO penalty, while 2 |β|
2 

corresponds to the Ridge Regression penalty. 

Similar to LASSO,  is the penalty parameter used for model estimation.
14,15

 In light of all this methodologi-

cal information, we can summarize the simulation steps we have performed in our study: 

SIMULATION STUDY 

The following steps were taken in the simulation study: 

 Independent variables were generated from the Standard Normal Distribution [n (0.1)] with p=16, 

18, and 20.  

 Sample sizes of n=50, 100, and 200 were generated for these independent variables.  
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 Correlations between independent variables were set to r=0.10, 0.60, and 0.90.  

 The penalty parameter λ was set within the range of [0.01-100], and its optimal value was deter-

mined during the simulation.  

 Cross-Validation procedures were applied solely to find the optimal λ penalty parameter. 

  R
2
 and its standard errors and MSE values and their standard errors were obtained for all combina-

tions. 

To ensure the generalizability of regression results, it is desirable to have at least 10 observations per 

independent variable, ideally between 15 and 20.
16

 Consequently, datasets with a sample size of 50 included 

3 independent variables, those with a sample size of 100 included 7 independent variables, and those with a 

sample size of 200 included 13 independent variables. LAR and LASSO methods, which are penalized re-

gression techniques, can only select up to “n” variables when p>n due to the nature of convex optimization 

problems.
12,13

 LAR and LASSO methods never select the correct model in these cases. For this reason, the 

study focused solely on cases where p<n. Simulations and method comparisons were performed using ver-

sion 3.6.3 of the R programming language. 

    RESULTS 

When penalized regression methods were applied to data generated through simulation, the coefficients of 

the estimated models, R
2
 values, and the Mean±Standard Error values of Mean Squared Errors were pre-

sented in tables.  

When Table 1 is examined, with 16 variables, a correlation coefficient of 0.10, and n=50, the LAR and 

LASSO methods included the same variables in the model, while the EN method constructed the model with 

different coefficients. When n=100, the EN method included different variables in the model compared to 

the other 2 methods, whereas LAR and LASSO selected the same variables and estimated the same coeffi-

cients. When n=200, LAR and LASSO included the same variables in the model, while the EN method ex-

cluded the variable X9 and included the variable X13, thus completing the variable selection process differ-

ently.  

For a correlation coefficient of 0.60 and n=50, LAR and LASSO included only one different variable in 

their models. While LAR and LASSO calculated similar coefficient values, the EN method estimated 

smaller regression coefficients. When n=100, LASSO included a different variable compared to LAR, creat-

ing distinct predictions. The EN method included other variables in the model, leading to a prediction differ-

ent from the other 2 methods. For n=200, LAR and LASSO selected the same variables and calculated simi-

lar coefficient values for these variables, while the EN method included 2 different variables compared to the 

other 2 methods. 

For a correlation coefficient of 0.90 and n=50, LAR and LASSO included the same variables in the 

model and arrived at the same prediction. The EN method, however, produced a different prediction. When 

n=100, LAR and LASSO selected the same variables and completed the variable selection process. For 

n=200, LAR and LASSO included the same variables in the model, while the EN method differed by includ-

ing variables X5 and X15 and excluding X7. 

When Table 2 is examined, with 18 variables, a correlation coefficient of 0.10, and n=50, the only vari-

able commonly included by LAR, LASSO, and EN methods was X15. While LAR and LASSO calculated 

nearly identical regression coefficients, EN produced different estimates. For n=100, LAR, LASSO, and EN 

included the same three variables in the model, but the inclusion of other variables varied. When n=200, 

LAR and EN methods differed by only 2 variables in their model predictions, while LASSO included differ-

ent variables.  
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TABLE 1: Estimated model when the number of variables is 16 and the correlation coefficient (r) is 0.10, 0.60 and 0.90 respectively 
 

 

n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

r=0.10 

β1 - - - - - - - - - 

β2 - - - 0.078 0.078 0.066 0.064 0.064 0.054 

β3 0.080 0.080 0.061 0.077 0.077 0.068 0.066 0.066 0.056 

β4 0.082 0.081 - 0.074 0.074 - 0.061 0.061 0.051 

β5 - - - 0.086 0.086 - 0.063 0.063 0.049 

β6 - - - 0.081 0.081 0.064 0.064 0.064 0.053 

β7 0.110 0.111 - - - - 0.065 0.065 0.054 

β8 - - - - - - 0.063 0.063 0.051 

β9 - - - 0.085 0.086 0.064 0.062 0.062 - 

β10 - - - - - 0.069 0.062 0.062 0.055 

β11 - - 0.080 - - - 0.068 0.068 0.054 

β12 - - - - - - 0.067 0.067 0.057 

β13 - - - - - 0.071 - - 0.055 

β14 - - - - - - 0.065 0.065 0.053 

β15 - - - - - - - - - 

β16 - - 0.074 0.083 0.083 0.062 0.066 0.066 0.057 

r=0.60 

 

n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 - - - 0.099 0.098 - 0.081 0.081 0.074 

β3 - - - - 0.093 - 0.082 0.082 0.076 

β4 - - - - - - 0.082 0.082 0.076 

β5 - - - - - 0.080 0.079 0.080 0.074 

β6 0.123 0.121 0.101 - - 0.085 0.080 0.080 - 

β7 - - - 0.095 0.093 0.085 0.081 0.081 0.075 

β8 - - - 0.097 - - 0.082 0.081 0.078 

β9 - - 0.097 - - - 0.083 0.084 0.076 
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β10 - - - 0.100 0.099 0.089 - - 0.077 

β11 - 0.111 - 0.096 0.096 0.086 0.080 0.081 0.076 

β12 - - - 0.102 0.102 0.091 0.078 0.079 0.074 

β13 - - - 0.097 0.097 0.086 0.082 0.082 - 

β14 - - - - - - 0.080 0.080 0.074 

β15 0.118 0.115 - - - - 0.082 0.082 0.078 

β16 0.117 - 0.098 - - - - - 0.078 

r=0.90 

 

n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 - - 0.096 0.097 0.096 0.084 0.084 0.083 0.077 

β3 - - - 0.093 0.093 0.083 0.081 0.081 0.074 

β4 - - 0.098 0.100 0.099 0.084 0.084 0.083 0.077 

β5 0.125 0.123 - - - 0.085 - - 0.077 

β6 0.119 0.117 - 0.102 0.100 - 0.086 0.086 0.076 

β7 - - - 0.097 0.096 0.084 0.088 0.088 - 

β8 0.116 0.113 0.094 - - - 0.082 0.082 0.075 

β9 - - - - - - 0.081 0.081 0.074 

β10 - - - 0.101 0.100 0.086 0.084 0.082 0.075 

β11 - - - 0.095 0.094 - 0.083 0.083 0.075 

β12 - - - - - - 0.083 0.083 0.076 

β13 - - - - - 0.086 0.083 0.083 0.078 

β14 - - - - - - 0.086 0.085 0.078 

β15 - - - - - - - - 0.077 

β16 - - - - - - 0.083 0.083 - 

 
LASSO: Least absolute shrinkage and selection operator; LAR: Least angle regression; EN: Elastic-net regression; β: Coefficient of regression; r: Coefficient 
of correlation; n: Sample size 
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TABLE 2: Estimated model when the number of variables is 18 and the correlation coefficient (r) is 0.10, 0.60 and 0.90 respectively 
 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

r=0.10 

β1 - - - - - - - - - 

β2 - - - - - - 0.062 0.061 0.051 

β3 - - - 0.076 0.080 0.065 0.062 0.064 0.054 

β4 - - - 0.079 0.076 - 0.063 0.061 0.050 

β5 0.079 0.080 - - - - 0.065 0.062 0.052 

β6 - - - - - - 0.060 - - 

β7 - - - - 0.081 0.067 0.059 0.064 0.053 

β8 - - - - - - - 0.056 0.045 

β9 - - - - - - 0.063 0.058 - 

β10 - - - 0.081 - - - 0.068 0.056 

β11 - - - 0.079 0.075 0.060 0.059 0.063 0.050 

β12 - - - - 0.076 0.061 - - - 

β13 - - 0.070 0.085 - - 0.060 - - 

β14 0.085 0.085 - 0.074 - - 0.063 0.063 0.053 

β15 0.073 0.073 0.063 - 0.083 0.070 0.062 0.061 0.054 

β16 - - - - - - 0.064 0.062 0.051 

β17 - - - - - 0.056 - 0.058 0.049 

β18 - - 0.079 0.070 0.068 0.057 0.062 - 0.049 

r=0.60 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 0.103 - 0.087 - - - 0.079 0.079 0.074 

β3 - - - - - - 0.080 0.080 0.073 

β4 - - - - 0.087 0.079 0.072 0.071 0.067 

β5 - - - - - 0.080 - - - 

β6 - - - 0.096 0.096 - - - - 

β7 - - - 0.092 0.092 0.082 0.079 0.079 0.073 

β8 - - - 0.093 0.092 0.083 0.078 0.078 0.074 

β9 - - - 0.095 0.094 0.086 0.074 0.074 0.069 

β10 - - - - - - 0.078 0.078 - 



 

Ali Türker ÇİFTÇİ et al. Turkiye Klinikleri J Biostat. 2025;17(1): 

 

 9 

β11 - - - 0.090 0.088 0.079 - - - 

β12 - - 0.094 - - - 0.074 0.073 0.068 

β13 0.109 0.107 0.090 0.091 0.089 0.078 0.074 0.074 0.069 

β14 - - - 0.092 - - 0.078 0.078 0.072 

β15 - - - - - - 0.077 0.077 0.071 

β16 - - - - - - - - 0.072 

β17 0.110 0.107 - - - - 0.076 0.076 0.071 

β18 - 0.108 - - - - 0.077 0.075 0.070 

r=0.90 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 - - - 0.094 - 0.078 0.079 0.079 0.072 

β3 - - - 0.093 0.092 0.079 0.076 0.076 0.069 

β4 - - - - - 0.080 0.082 0.082 0.072 

β5 - - - 0.089 - - 0.077 - 0.068 

β6 - - - - - - 0.079 0.079 0.071 

β7 - - - - - - 0.078 0.076 - 

β8 - - - - - - - - 0.070 

β9 0.117 - 0.090 0.096 0.094 0.081 0.081 0.080 0.072 

β10 - - - - - - - 0.077 0.070 

β11 - 0.111 0.089 - - - - - - 

β12 - - - - - - 0.077 0.075 0.069 

β13 - - - - - - 0.086 0.079 0.071 

β14 - - - 0.091 0.090 0.078 - - - 

β15 - - - - 0.089 - 0.079 0.078 0.071 

β16 0.115 0.110 0.093 0.094 0.093 0.081 0.076 0.076 - 

β17 0.119 0.117 - - 0.091 0.077 0.074 0.073 0.068 

β18 - - - 0.090 0.088 - 0.080 0.080 0.074 

 
LASSO: Least absolute shrinkage and selection operator; LAR: Least angle regression; EN: Elastic-net regression; β: Coefficient of regression; r: Coefficient 
of correlation; n: Sample size 
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For a correlation coefficient of 0.60 and n=50, LAR, LASSO, and EN methods included some common 

variables while differing in others to complete their models. For n=100, LAR included variable X4 but ex-

cluded X14 compared to LASSO. Furthermore, differences were observed between LAR and EN for vari-

ables X5 and X6. The LASSO method, on the other hand, included X14 instead of X4. For n=200, LAR and 

LASSO estimated the same model, while EN included variable X16, differing from the other 2 methods. 

For a correlation coefficient of 0.90 and n=50, LAR, LASSO, and EN methods included 3 variables in 

the model, with only X16 being commonly included. For n=100, EN, LAR, and LASSO included different 

variables in the model, although they calculated similar coefficient values for the included variables. For 

n=200, penalized regression methods produced similar model predictions. 

When Table 3 is examined, with 20 variables, a correlation coefficient of 0.10, and n=50, LAR and 

LASSO included the same variables in the model, while EN included a different variable compared to the 

other two methods. For n=100, LAR and LASSO included the same variables in the model with identical re-

gression coefficients.  

EN, however, excluded variable X17 and included variables X7 and X13, thus completing the variable se-

lection differently. For n=200, the penalized regression methods estimated the models using different vari-

ables and regression coefficients.  

For a correlation coefficient of 0.60 and n=50, penalized regression methods included different vari-

ables in the model, thereby applying variable selection differently. For n=100, LASSO included variable X20 

in the model, while LAR included X19 instead of X20. EN included variable X14 but excluded X9 compared to 

the other two methods. For n=200, penalized regression methods included the same variables in the model. 

While the regression coefficients were similar between LAR and LASSO, some differences were observed in 

the coefficients estimated by the EN method. 

When the correlation coefficient is 0.90 and n=50, LAR, LASSO, and EN methods calculated regres-

sion coefficients for the variables in the model with similar values. For n=100, LAR and LASSO methods 

included the same variables in the model, while the EN method completed variable selection differently from 

the other methods. For n=200, the LAR method did not include the X13 variable in the model but added the 

X18 variable, unlike the LASSO method. 

In Table 4, for 16 variables, a correlation coefficient of 0.10, and n=50, the LAR method achieved the 

highest R
2
 value and the lowest error. For n=100, the R

2
 values of the LAR and LASSO methods were 

identical. For n=200, the EN method lagged behind the other methods in model prediction performance. 

With 16 variables and a correlation coefficient of 0.60 across all sample sizes, the LAR method showed 

the highest model prediction performance, while the EN method was calculated to have lower model per-

formance. For 16 variables, a correlation coefficient of 0.90, and n=50 or n=100, the LAR and LASSO 

methods predicted the same R
2
 values. For n=200, the LAR method outperformed the others in model 

prediction performance. For 18 variables, a correlation coefficient of 0.10, and n=50, the LAR method 

provided the highest model prediction performance. For n=100 and n=200, the LAR and LASSO methods 

predicted identical results. For 18 variables, a correlation coefficient of 0.60, and n=50, the LAR method 

estimated a lower error, while the LASSO method performed better for n=100. For n=200, the LAR and 

LASSO methods provided identical predictions. With 18 variables, a correlation coefficient of 0.90, and 

n=50, the LAR method predicted the highest R
2
 value and the lowest MSE, while the EN method under-

performed compared to the other 2 methods. For n=100 and n=200, the LAR and LASSO methods 

achieved the same model prediction performance. For 20 variables, a correlation coefficient of 0.10, and 

n=50, the LAR method yielded the best results. For n=100 and n=200, the EN method predicted lower R
2
 

values and higher MSE compared to the LAR and LASSO methods. With 20 variables, a correlation coef-

ficient of 0.60, and across all sample sizes, the LAR method was the best-performing method, while the 

EN method was the least successful. For 20 variables, a correlation coefficient of 0.90, and n=50 or 

n=100, the LAR method achieved the best model prediction performance. For n=200, the LAR and 

LASSO methods produced identical model predictions.  
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TABLE 3: Estimated model when the number of variables is 20 and the correlation coefficient (r) is 0.10, 0.60 and 0.90 respectively 
 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

r=0.10 

β1 - - - - - - - - - 

β2 - - - - - - - 0.059 - 

β3 - - - 0.067 0.067 0.058 0.056 0.058 0.052 

β4 - - - 0.071 0.071 0.057 - 0.063 - 

β5 - - 0.070 - - - 0.059 - - 

β6 - - - 0.071 0.071 - 0.058 0.061 0.053 

β7 - - - - - 0.056 0.061 - 0.050 

β8 - - - - - - 0.060 0.061 0.050 

β9 - - - - - - 0.057 0.058 0.047 

β10 0.090 0.090 0.072 0.067 0.067 0.056 0.058 0.059 0.049 

β11 - - - - - - 0.061 0.059 0.048 

β12 - - - 0.070 0.070 0.060 - - 0.050 

β13 - - - - - 0.059 0.059 0.060 0.049 

β14 - - - 0.078 0.078 0.064 - - 0.045 

β15 - - - - - - 0.062 0.060 0.047 

β16 - - - - - - - 0.061 0.052 

β17 - - - 0.075 0.075 - 0.062 0.054 - 

β18 - - - - - - 0.058 - 0.048 

β19 0.098 0.095 0.078 - - - 0.060 0.066 - 

β20 0.072 0.070 - - - - - - - 

r=0.60 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 - - - - - - 0.075 0.074 0.067 

β3 0.108 0.104 0.089 0.086 0.085 0.075 0.073 0.072 0.065 

β4 - - - 0.085 0.083 0.077 0.073 0.073 0.068 

β5 - - 0.088 - - - 0.071 0.071 0.065 

β6 - - - - - - 0.069 0.069 0.064 

β7 - - - 0.089 0.089 0.078 - - - 

β8 - - - - - - - - - 

β9 - - - 0.083 0.082 - 0.071 0.070 0.064 

β10 - - - - - - 0.074 0.074 0.069 

β11 - - - - - - 0.073 0.072 0.067 
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β12 - - - 0.093 0.091 0.080 - - - 

β13 - - - 0.091 0.090 0.079 0.070 0.070 0.065 

β14 - - - - - 0.080 - - - 

β15 - 0.098 - - - - - - - 

β16 0.101 0.110 - - - - 0.072 0.072 0.066 

β17 0.113 - 0.093 - - - 0.076 0.076 0.070 

β18 - - - - - - 0.076 0.076 0.069 

β19 - - - - 0.088 0.078 0.072 0.071 0.065 

β20 - - - 0.090 - - - - - 

r=0.90 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

β1 - - - - - - - - - 

β2 - - 0.083 - - - 0.076 0.075 0.067 

β3 - - - - - - 0.075 0.074 0.066 

β4 - - - 0.096 0.094 - 0.071 0.071 0.065 

β5 - - - - - - - - - 

β6 - - - - - - 0.074 0.074 0.066 

β7 - - - 0.092 0.092 0.078 0.071 0.071 0.064 

β8 - - - - - - - - - 

β9 0.108 0.105 - - - - 0.075 0.074 0.067 

β10 - - - 0.086 0.085 - - - - 

β11 - - - - - - 0.074 0.073 0.065 

β12 - 0.106 0.085 0.091 0.087 0.077 - - 0.065 

β13 0.113 - - 0.084 0.085 0.072 0.073 - - 

β14 - - - - - 0.075 - - - 

β15 - - - - - 0.070 0.074 0.073 0.066 

β16 - - - - - - 0.072 0.072 0.065 

β17 - - - - - - 0.072 0.071 0.064 

β18 - - 0.094 0.086 0.084 0.073 - 0.071 0.064 

β19 0.110 0.107 - 0.089 0.087 0.075 0.073 0.072 0.065 

β20 - - - - - - 0.074 0.073 - 

 
LASSO: Least absolute shrinkage and selection operator; LAR: Least angle regression; EN: Elastic-net regression; β: Coefficient of regression; r: Coefficient 
of correlation; n: Sample size 
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TABLE 4: R2 and MSE estimates of models estimated with different numbers of variables, different correlation coefficients and different 
sample sizes depending on the method used 
 

 
n=50 n=100 n=200 

LASSO LAR EN LASSO LAR EN LASSO LAR EN 

Number of 
Variables= 
16 

r=0.10 
R2 0.360±0.003 0.360±0.003 0.113±0.004 0.214±0.001 0.214±0.001 0.094±0.002 0.137±0.001 0.137±0.001 0.088±0.001 

MSE 0.622±0.004 0.621±0.004 0.861±0.006 0.783±0.003 0.783±0.003 0.902±0.004 0.857±0.003 0.857±0.003 0.906±0.003 

r=0.60 
R2 0.705±0.002 0.705±0.002 0.650±0.002 0.640±0.001 0.642±0.001 0.620±0.002 0.606±0.001 0.606±0.001 0.600±0.001 

MSE 0.282±0.002 0.281±0.002 0.333±0.002 0.353±0.001 0.352±0.001 0.372±0.001 0.389±0.001 0.389±0.001 0.396±0.001 

r=0.90 
R2 0.925±0.001 0.925±0.001 0.912±0.001 0.909±0.001 0.909±0.001 0.904±0.001 0.900±0.001 0.901±0.001 0.899±0.001 

MSE 0.070±0.001 0.070±0.001 0.083±0.001 0.088±0.001 0.088±0.001 0.093±0.001 0.097±0.001 0.097±0.001 0.098±0.001 

Number of 
Variables= 
18 

r=0.10 
R2 0.412±0.003 0.412±0.003 0.131±0.005 0.239±0.002 0.239±0.002 0.107±0.002 0.148±0.001 0.148±0.001 0.093±0.001 

MSE 0.574±0.004 0.573±0.004 0.847±0.007 0.756±0.003 0.756±0.003 0.887±0.004 0.850±0.002 0.850±0.002 0.905±0.003 

r=0.60 
R2 0.733±0.002 0.733±0.002 0.666±0.002 0.652±0.001 0.651±0.001 0.627±0.001 0.617±0.001 0.617±0.001 0.608±0.001 

MSE 0.261±0.002 0.259±0.002 0.323±0.002 0.343±0.001 0.343±0.001 0.367±0.001 0.380±0.001 0.380±0.001 0.388±0.001 

r=0.90 
R2 0.930±0.001 0.931±0.001 0.914±0.001 0.912±0.001 0.912±0.001 0.905±0.001 0.903±0.001 0.903±0.001 0.901±0.001 

MSE 0.067±0.001 0.066±0.001 0.082±0.001 0.086±0.001 0.086±0.001 0.092±0.001 0.096±0.001 0.096±0.001 0.097±0.001 

Number of 
Variables= 
20 

r=0.10 
R2 0.445±0.003 0.444±0.003 0.135±0.005 0.255±0.002 0.255±0.001 0.105±0.003 0.160±0.002 0.160±0.002 0.095±0.002 

MSE 0.546±0.004 0.544±0.004 0.846±0.007 0.741±0.002 0.741±0.002 0.889±0.004 0.840±0.002 0.840±0.002 0.905±0.003 

r=0.60 
R2 0.745±0.002 0.745±0.002 0.666±0.002 0.661±0.002 0.661±0.001 0.631±0.001 0.621±0.002 0.621±0.001 0.610±0.001 

MSE 0.246±0.002 0.243±0.002 0.317±0.002 0.331±0.001 0.330±0.001 0.360±0.001 0.375±0.001 0.374±0.001 0.384±0.001 

r=0.90 
R2 0.935±0.001 0.935±0.001 0.915±0.001 0.914±0.001 0.915±0.001 0.907±0.001 0.905±0.001 0.905±0.001 0.902±0.001 

MSE 0.062±0.001 0.061±0.001 0.080±0.001 0.083±0.002 0.082±0.001 0.089±0.001 0.094±0.001 0.094±0.001 0.096±0.001 

 

LASSO: Least absolute shrinkage and selection operator; LAR: Least angle regression; EN: Elastic-net regression; R2: Coefficients of determination; MSE: Mean square error; n: 
Sample size 
 

 

 
 

    DISCUSSION 

In cases where multicollinearity, one of the assumptions of multiple linear regression, is present, the consis-

tency and reliability of results obtained with OLS decrease. In other words, for data with multicollinearity 

issues, although OLS is an unbiased method, it calculates higher variances for estimators, leading to errors in 

the predicted model. Consequently, in such cases, biased methods have become popular alternatives to the 

unbiased OLS method.  

Penalized regression methods have earned their place in the literature as biased methods. However, they 

minimize errors in model prediction without introducing significant bias. As the dimensions of today’s data-

sets increase, identifying the variables that best explain the dependent variable among potentially many in-

dependent variables has become critically important.
17

 

In clinical datasets, many variables exhibit a high degree of correlation with one another, which can lead 

to errors in treatment and diagnosis processes. Variable selection is one of the solutions used to address mul-

ticollinearity issues. Variable selection is crucial for improving model performance. Among the most com-

monly preferred methods for variable selection are forward selection, backward selection, and stepwise 

methods. However, the major drawback of these methods is that they do not account for the relationships 
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among variables.
18

 To address this problem, penalized regression methods such as LAR, LASSO, and EN 

are utilized. LAR and LASSO methods, in cases where the number of variables exceeds the sample size 

(p>n), include only as many variables in the model as the sample size (n variables). This limitation arises 

from the nature of convex optimization problems, preventing these methods from constructing accurate 

models under such conditions.
12,13,19

 

The present study indicates that when the level of correlation among independent variables is low 

(r=0.10), all three methods exhibit lower model prediction performance. As the level of correlation increases, 

model prediction performance improves. Similarly, when comparing the methods with a fixed number of 

variables and correlation coefficient while increasing the sample size (n=50, 100, 200), the R
2
 values de-

crease, and MSE values increase.  

In the literature, similar studies highlight that LAR is the most successful method in predicting 

models when compared with LASSO and OLS in time series analyses involving variable selection.
20

 In 

another study using a cholesterol dataset, LASSO and EN methods were compared, and LASSO was 

found to outperform EN in model prediction.
21

 In another study using a diabetes dataset, LAR and 

LASSO methods were compared with the stepwise selection method. While LAR and LASSO methods 

provided the same R
2
 values, the MSE value for LAR was found to be lower.

6
 In a simulation study 

with 20 independent variables, a sample size of 100, and correlation coefficients of 0.7, 0.8, and 0.9, 

Ridge, LASSO, and EN methods were compared. It was observed that LASSO and EN selected diffe r-

ent variables under certain conditions to construct the model, with EN providing better model predic-

tions.
22

 In another study with time series in the field of economics involving LAR, LASSO, and EN 

methods, these penalized regression methods were compared and it was concluded that the LAR method 

yielded more successful results than the other methods.
23

 In a simulation study using 1000 iterations for 

each scenario, it was revealed that LASSO outperformed EN in scenarios involving small sample sizes 

and low correlation coefficients, medium sample sizes and moderate correlation coefficients, and large 

sample sizes and high correlation coefficients.
24

 In another study, a comparison of LASSO and EN 

methods was conducted on a data set related to egg selection and the results revealed that although the 

same variables were included in the model, the LASSO method predicted a better model when the 

model when comparing R
2
 values.

25 

    CONCLUSION 
This study demonstrates that the LAR method performs best under almost all conditions, including var y-

ing numbers of variables, correlation values, and sample sizes. In addition, it was determined that the 

LASSO method predicts the same model as the LAR method in some cases, while it predicts a model that 

falls behind the LAR method in other cases. The EN method, on the other hand, predicts a model that 

lags behind the other 2 methods in model prediction success. However, although the EN method lags be-

hind the other 2 methods regarding model prediction success, its standalone model prediction success is 

high. 

In light of these results, it can be concluded that penalized regression methods, LAR, LASSO, and EN, 

achieve model predictions with minimal error in datasets with multicollinearity problems and that these 

methods are particularly recommended for datasets with small sample sizes, where model prediction per-

formance tends to be higher. 
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