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SIRTs are described in the deacetylases class III 
family. The members which are induced by nicotina-
mide adenine dinucleotide (NAD+) and are closely 
associated with various deoxyribonucleic acid (DNA) 
histone proteins. In humans, SIRTs family is compo-
sed of seven members; SIRT1-SIRT7. The majority 
of SIRTs show NAD+-dependent deacetylase acti-
vity. SIRT4 and SIRT6 function as mono-adenosine 

triphosphate-ribosyl transferase. SIRT5 besides dea-
cetylation, it can also generate demalonylation and 
desuccinylation. The presence of SIRTs has been re-
ported to be present in various compartments in the 
cell for example; SIRT1, SIRT6, and SIRT7 was lo-
cated in the nucleus, SIRT3, SIRT4, and SIRT5 in 
the mitochondria and SIRT2 in the cytosol. Recents 
investigations demonstrated active involvement of 
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ABS TRACT Sirtuins (SIRTs) are described as a family of nicotinamide 
adenine dinucleotide (NAD+)-dependent deacetylases and is able to cat-
alyze post-translational modifications of proteins. It has been documented 
that, SIRTs respond to metabolic challenges, inflammation molecules, 
and oxidative stress. Many studies have linked SIRTs with longevity and 
having anti-aging activity. Our knowledge of SIRTs in reproduction has 
grown increasingly over the last few years. The majority of these research 
is carried out primarily on the effects on SIRT1 on female reproduction. 
It has been demonstarted that down-regulating SIRT1 trigers the reduc-
tion of ovarian reserve. Many research has demonstrated that, SIRT1 reg-
ulates proliferation and apoptosis in granulosa cells. Activity studies of 
SIRTs opened the discoveries of the functional aspects of different types 
of SIRTs in improving the overall quality of in vitro oocytes in humans 
and animal models. It has been documented that, SIRT1, SIRT2 and 
SIRT3 protect oocytes against postovulatory aging. The relationship be-
tween derangement of SIRT signaling and the imbalance of reactive oxy-
gen species and antioxidant defenses in female reproductive organs has 
also been documented. The present review aims to put forward informa-
tion on the mechanism and cellular role of SIRTs and give an update of 
sirtuin research in female reproduction under physiological and patho-
logical conditions. The final goal of this work is to put forward the ther-
apeutic potential of SIRTs in female infertility.  
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ÖZET Sirtuinler (SIRT), proteinlerin translasyon sonrası modifikas-
yonlarını katalize eden bir nikotinamid adenin dinükleotid (NAD+) ba-
ğımlı deasetilaz ailesidir. Metabolik zorluklara, inflamatuar sinyallere 
veya hipoksik/oksidatif strese yanıt verirler ve yaşlanma ve uzun yaşam 
ile ilişkilidirler. SIRT’ler ile ilgili üreme alanındaki bilgimiz son birkaç 
yılda giderek artmıştır. Şimdiye kadar yapılan çalışmaların çoğu kadın 
üremesine dönük olup, SIRT1’e odaklanılmıştır. SIRT1 sentezinin azal-
ması sonucunda ovaryan rezervin de azaldığı kanıtlanmıştır. SIRT1’in, 
granüloza hücre proliferasyonu ve apoptozunu düzenlediği de gösteril-
miştir. SIRT’lerin biyokimyasal aktivitesinin ortaya çıkarılmasıyla 
SIRT1, SIRT2, SIRT3 ve SIRT6’nın insan ve hayvan modellerinde in 
vitro olarak geliştirilen oositler üzerindeki rollerinin keşfedilmesine yol 
açmıştır. Son zamanlarda SIRT1, SIRT2 ve SIRT3 oositin postovula-
tuar yaşlanmaya karşı koruyuculukları ortaya çıkmıştır. Ayrıca 
SIRT’lerin etkilediği sinyal yolaklarının düzensizleşmesi sonucu, kadın 
üreme organlarında reaktif oksijen türleri ve antioksidan savunma me-
kanizmalarındaki dengesizlik gösterilmiştir. Bu derleme, kadın üreme-
sinde fizyolojik ve patolojik koşullar altında SIRT’lerin etki 
mekanizmaları ve hücresel rolü hakkında güncel bilgi aktarmayı amaç-
lamaktadır. Bu çalışmanın nihai amacı, kadın infertilitesinde tedavi 
amaçlı, SIRT’lerin potansiyel bir molekül olabileceği konusunu gün-
deme taşımaktır. 
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SIRTs in the modulation of many functional aspects 
of the ovaries. It has been demonstrated that, endoc-
rine factors including SIRTs can influene the physio-
logy of female reproductive system by stimulating 
the cellular elements of the ovaries.1,2 It is documen-
ted that, SIRTs can affect cellular activities through 
down-regulating mammalian target of rapamycin 
(mTOR) and related intracellular signaling path-
ways.3 Recent studies has examined SIRTs and their 
regulators extensively and have put forward their po-
tential role in diagnosis and treatment in some disor-
ders. 

 MECHANISMS OF ACTION OF THE  
SIRTUINS  

Redox imbalance and decreased oxygen is a crucial 
environmental factor that is regulated by the cells. It 
is reported that, SIRT1 acts as a redox and oxygen 
sensor. In hypoxic environment, decreased 
NAD+ concentrations suppresses the synthesis of 
SIRT1 levels.4 A nutritional study in mice compared 
the effects on hepatic CREB-regulated transcription 
coactivator 2 (CRTC2) activity in short-term fasting 
(6-8 hours), or long-term fasting (18-24 hours) con-
ditions.5 In the same study the authors suggested that, 
during the initial fasting phase, gluconeogenesis is in-
hibited by the SIRT1.5  

In muscle, SIRT1 synthesis was decreased in 
response to high lipid diet.6  

The nuclear factor (NF) is well known for its 
major functions in the inflammatory reactions. It has 
been documented that, by the deacetylation mecha-
nism, SIRT1 inhibits the activity of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-
kB) and therefore, decreases the concentration of re-
active oxygen species (ROS) and inflammatory 
reactions.7 

SIRT2 on the other hand, was demonstrated to 
be involved in regulating glucose and lipid metabo-
lism via the activity of deacetylation. In addition, 
SIRT2 by stimulating phosphatidylinositol 3 ki-
nase/protein kinase B (KB/Akt) pathway it regulates 
the activity of insulin. It is well known that, this path-
way is involved in the activation of insulin receptor.8 
In a recent study, SIRT2 have been shown to increase 

the effect of pyruvate kinase (PK), phosphoenolpy-
ruvate carboxylase, and phosphoglycerate mutase ac-
tivity and therefore enhancing the tricarboxylic acid 
cycle.9 

It has been suggested that, SIRT1 and SIRT2 is 
involved in the survival and functional aspects of 
neurons. Many research indicates that, SIRT1 and 
SIRT2 can be regarded as a novel target for the pre-
vention of neurodegenerative diseases. Among the 
findings of these publications, it was demonstrated 
that, SIRT2 play a crucial role in neuorinflammation. 
In addition, in Parkinson’s animal model it was de-
monstrated that, SIRT2 has a neuroprotective role 
and also induces neurogenesis in the hippocampus.10-

12 

 SIRTS AND AGING 
Aging is regarded as a physiological process linked to 
cellular senescence with declined metabolism.13 It has 
been documented by many studies that, 5’AMP-acti-
vated protein kinase (AMPK) is involved in preven-
ting aging and cellular senescence.14,15 AMPK 
signaling has also been recognized to activate autop-
hagy through suppression of the mTOR pathway.16 
There are various pharmacological inducers of 
AMPK and some are metformin and berberine. Many 
studies have put forward the positive effects of theses 
molecules in treating aged-related diseases such as 
metabolic, neurodegenerative, musculoskeletal and 
cancer.17 It has been demonstrated that, autophgic 
mechanisms is abnormal and impaired in elderly and 
activity of autophagy is crucial for degrading non-
functional or injured structural elements such as pro-
teins and organells.18 Increased amount of evidence 
showed that, the autophagic mechanisms decline with 
age.19 In these studies the autophagy was investiga-
ted by assessment of p62 protein, lysosomal hydro-
lases and by visualizing the presence of green 
fluorescent protein-tagged microtubule-associated 
protein light chain 3 protein.19 In addition to these fin-
dings, a decline of NAD+ is also present in the aged 
individuals and the mechanisms for this decrease is 
not fully understood.20 The same authors showed that, 
administration of NAD+ precursors to the aged mice 
expressed remarkable improvement in the age-rela-
ted features.20 Furthermore, AMPK besides increa-
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sing the levels of NAD+ it also increses the levels of 
SIRT1 and this pathway is mediated by nicotinamide 
phosphoribosyltransferase, an enzyme which is cru-
cial in the synthesis of NAD+.21,22 

Several studies has demonstrated that, SIRT1 
has important activating effect in the growth of me-
senchymal stem cells, and preventing replicative se-
nescence by activating the transcription of human 
telomearse reverse transcriptase gene.23,24 In addition, 
SIRT1 deletion shows a slow downregulation of cell 
growth and therefore, significantly increases the se-
nescence time phase.23 It was documented by Xu and 
co-workers that, SIRT1 induced the activity of miR-
22, a molecule that is involved in the senescence 
mechanisms.25 On the other hand, the production of 
SIRT1 can be regulated by micro ribonucleic acid 
(miRNA)-a molecule that suppresses the synthesis of 
messenger ribonucleic acid (mRNA) translation.26 In 
addition, some studies have demonstrated a robust 
age dependent decrease in SIRT1 activity in the liver, 
heart, kidney, lung, muscles, and cerebellum of the 
rat.27,28 Moreover, SIRT1 concentration and produc-
tion was decreased in CD-1 aged mice.29 

 SIRTS AND REPRODUCTION 
Reproduction, is one of the fundemental biological 
event that maintains the presence of the species. It is 
important to note that, the content of the primordial 
follicles and the quality of the oocytes is inversly ef-
fected by the aging process, hormonal changes and 
other external envoronmental factors which results in 
inferterlity. The ovarian cycle is regulated by many 
factors and hormonal mechanisms including SIRTs.30 

The increasing amount of findings suggests that, 
SIRTs may be engaged in controlling both the human 
and animal reproductive mechanisms and it may be 
regarded as a potential candidate to treat certain rep-
roductive related deseases. 

 SIRTS IN THE OVARY 
ROS is an important phenomenon that is involved in 
afffecting many cellular processes including follicu-
logenesis and oocyte development and maturation.31 

SIRTs is very well known to be the active molecule 
in aging and cellular metabolism and this effect is pri-

marily achieved by its potential role in reducing the 
damage of oxidative damage.32 It is known that aging 
process decreases the quality of the oocytes and re-
ducing the effectivness of the oocyte mitochondria 
and enhancing the DNA breaks by oxidative damage. 
However, only recent studies have pointed out the 
importance of SIRTs in regulating the oocyte quality 
especially in the aged conditions.32 In the oocytes, it 
was demonstrated that, SIRT6 is expressed in high 
levels and in the cumulus cells SIRT1, SIRT2, 
SIRT4, and SIRT6 were also expressed in high le-
vels.33 The same authors compared the levels of 
SIRTs between the young and old mice and found 
that there were significant decrease in SIRT2 and 
SIRT6 transcripts in cumulus cells of aged mice. The 
authors suggested the presence of a possible mecha-
nism between the quality of the oocytes and aging 
processes via regulating the activity of cumulus cells 
through SIRTs. These findings may be important in 
aged related disorders and for candidates that may 
have potential clinical applications especially in aged 
women and one of the novel candidate may be the 
surtuins.33 

Luo et al. examined the follicular fluid from pa-
tients of different diseases.34 They demonstrated an 
overexpression of microRNA 23a (miR-23a) which 
inhibited SIRT1 expression and increased apoptosis 
in the granulosa cells. The association of SIRTs with 
the regulation of ovarian activity was described by 
Sirotkin.1 The author suggested that, the reproductive 
functions such as proliferation and apoptosis is regu-
lated by mTOR. Recent studies detected SIRT1 in the 
follicles, ovarian epithelium, stromal and granulosa 
cells and SIRT3 and SIRT5 was identified in granu-
losa cells and cumulus oophorus.35,36 

Increased amount of studies have demonstrated 
SIRT3 as prime molecule in regulating the activity of 
the mitochondria through the acetylation of mitoc-
hondrial and scavenging proteins. Zhao et al. de-
monstrated the role of SIRT3 in the formation of new 
mitochondria and its role in the oocyte quality.37 The 
same authors showed that, downregulation of the mi-
tochondrial function leads to the accumulation of free 
radicals that promotes DNA and protein impairment 
and apoptosis. 
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Zhao and colleaques demonstrated a decrease in 
the levels of SIRT3, biogenesis and the number of 
mitochondria in human oocytes.37 The same authors 
proposed that, human in vitro maturation (IVM)-me-
taphase II (MII) oocytes is influenced by decreased 
mitochondrial biosynthesis and insufficiency of 
SIRT3 mRNA.37 Many results indicate that, there are 
potential factors including the SIRTs that are invol-
ved in the maturation of oocyte and SIRTs may be 
regarded as central target to improve IVM-MII 
oocyte quality. Furthermore, the results of these ob-
servations may highlight the clinical applications and 
the potential targets of future IVM procedures. Mea-
suring sirtuin levels in the fluids can be regarded as a 
diagnostic tool to treat many ovarian disorders (Fi-
gure 1). It has been indicated that, SIRT1, SIRT3, 
SIRT5, and SIRT6 can be used as markers to describe 
normal and abnormal follicular development.   

 SIRTS AND OOCYTE  
In the last decade there is an increasing expectations 
for assisted reproductive technology. Assisted repro-
ductive technology, besides been high costly the out-
come is also unpredictable and the higher the age of 
the patients gives more lesser chance to be successful. 
Generally speaking, as age increases embryo quality 
decreases due to the decrease in mitochondrial num-

ber in the oocytes with low adenosine triphosphate 
content and increase in the DNA variation and ane-
uploidy. Presently, anti-Mullerian hormone and an-
tral follicle count in the serum are used to identify 
and detect the premature ovarian inadequacy.38-41   

However, in recent years there are growing num-
ber evidence that show the involvement SIRTs in mo-
dulating and influencing many distinct ovarian 
functions such as; cell proliferation, apoptosis, folli-
culogenesis, oogenesis, and over all embryo deve-
lopment. Therefore, SIRTs may be used as a tool to 
identify premature ovarian failure.42  

In parallel to this, it was shown that, in SIRT1-
deficient mice model, plasma gonadotropin-releasing 
hormone (GnRH), luteinizing hormone (LH) and fol-
licle stimulating hormone was decreased. In addition, 
in the rat ovaries, increased SIRT1 synthesis via res-
veratrol, was correlated with the high concentration 
of LH receptors and enzymes.43 These findings sug-
gests that, SIRT1 may be regareded as an important 
factor that can promote and influence specific func-
tional activities in the ovaries either direct effect or an 
indirect effect through GnRH. In the transfection stu-
dies, SIRT1 gene construct induced proliferation and 
production of insulin like growth factor-1, testoste-
rone and progesterone in porcine granulosa cells and 
mouse and human oocytes in culture.37,44,45 Over all 

FIGURE 1: Mechanisms of action of sirtuins on oocytes and granulosa cells. 
SIRT: Sirtuins; ROS: Reactive oxygen species; ATP: Adenosine triphosphate; MII: Metaphase II. 
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the these observations suggests that, SIRT1 can mo-
dulate and affect the activities of hormons that has 
active role in ovarian functions.46 In addition, SIRTs 
can regulate follicular cell functions through inducing 
a distinct set of transcription factors such as; p53, 
NFkB, forkhead box L2, neurogenic locus notch ho-
molog protein 3, signal transducer and activator of 
transcription 3 (Figure 2).47,48 It has been demonstra-
ted that, these molecules are effective in ovarian pro-
liferation, apoptosis, and steroidogenesis.37,44,46,49,50 A 

striking evidence was demonstrated in a mice that 
was deficient of SIRT1. It was reported that, these 
mice were infertile and along with other findings it 
was suggested by the authors that, SIRT1 can be re-
garded as a potential molecule for the regulation of 
ovarian functions.42 

SIRTs can influnce the activity of the target cells 
directly by either increasing or decreasing the levels 
of certain molecules, but also it can affect the target 
cells indirectly by influencing the synthesis of a 

FIGURE 2: Effects of changes in SIRT expression on oocyte quality and female infertility.  
SIRT: Sirtuins; FOXL2: Forkhead box L2; NAD: Nicotinamide adenine dinucleotide; mTOR: Mammalian target of rapamycin; PGC-1α: Peroxisome proliferator-activated re-
ceptor gamma coactivator 1-alpha; NOTCH3: Notch homolog protein 3; PPARy: Peroxisome proliferator-activated receptor gamma; STAT3: Transducer and activator of 
transcription 3; NF-KB: Nuclear factor kappa B; ROS: Reactive oxygen species; DNA: Deoxyribonucleic acid; ATP: Adenosine triphosphate; MII: Metaphase II. 
Note that, changes in SIRTs expression, causes mitochondrial dysfunction and aging by increasing reactive oxygen species (ROS), lipid peroxidation, DNA damage and 
inflammation in oocytes and embryos which leads to female infertility. 
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synthetic or natural (plant-derived) molecule called 
mTOR. Many studies demonstrated the actions of 
mTOR inhibitors on various ovarian functions. It is 
known that, mTOR pathway is essential in prolifera-
tion, apoptosis, secretory activity, follicular develop-
ment, and cancer formation of the ovaries. mTOR and 
SIRTs are functionally closely related. It was de-
monstrated that, resveratrol is an active mTOR bloc-
ker and mTOR is an inhibitor of SIRTs 1, 3, 4, and 
7.51-55 A pharmacological inhibitor of mTOR impro-
ved murine follicular cells and increased the lifespan 
of normal reproductive functions of the ovaries in 
rats.42 It was demonstrated that, mTOR blockers in-
duced SIRT1 and SIRT6 in ovarian cells.43,51  

On the other hand, resveratrol which is known 
to turn on the synthetic pathway of the SIRTs, pro-
moted ovarian follicular reserve and stopped the age-
related outcomes such as infertility and other diseases 
in mice.53,56 Another important study suggested that, 
the simplest way to enhance the synthesis of SIRTs is 
simply by caloric restriction. In another study, by res-
tricting the caloric intake enhanced the production of 
SIRT1 in murine ovaries.57  

Ovarian aging as mentioned earlier is an impor-
tant phenomenon that is crucial in follicular develop-
ment and oocyte quality. These changes may be the 
result of decrease in the levels of SIRT1, SIRT3, and 
SIRT6 in aged mice ovaries and decrease in the le-
vels of SIRT3 and SIRT5 in aged women ovaries.58 

It is evident that, in vitro fertilization and em-
bryo transfer treatment is a process that allows the 
formation of oxidative stress of the oocytes and the-
refore, destructs the quality of the oocytes. Studies 
has demonstrated that, SIRT1 and AMPK pathway 
can be activated by metformin and resveratrol by ac-
tivating the antioxidant systems in the polycystic 
ovary syndrome patients.59 Therefore, SIRT1 has 

been suggested by many authors as a valuable endo-
metrial marker in women with endometriosis.60,61 

 CONCLUSION 
SIRTs besides being discovered in many organs in 
the body it is also present in the ovarian follicles, ova-
rian epithelium, ovarian stroma, granulosa cells and 
cumulus cells surrounding the oocyte. The level of 
surtins has been regarded to be an important marker 
in ovarian cells and has been associated with normal 
reproductive health. Taken together, observations on 
SIRTs has led to the idea that, SIRTs may be regar-
ded as a potential molecule to detect the ovarian re-
serve and aged related damage of the normal ovarian 
tissue and in ovarian dysfunctions. 
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