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ABSTRACT Objective: The aim of this study is to build person-

based prediction models for simulated and real datasets separately 
with the SHapley Additive exPlanations method, and to demon-

strate whether the obtained person-based models are more valid and 

applicable than overall models. Material and Methods: Simulated 
datasets encompassed 13 independent and 1 dependent variable, 

across sample sizes of 250, 500, and 1,000, while the real dataset 

contained 826 patient records with 11 variables. “bindata”, “shaper” 
and “RWeka” packages in the R (version 4.1.2) programming lan-

guage were used. Extreme Gradient Boosting, Bagging, Random 

Forest, Support Vector Machine and Logistic Regression were used 
as classification methods. The assessment employed 10-fold cross-

validation, repetaed 1,000 times. Results: Accuracy values of the 
overall model in the datasets with 250, 500, and 1,000 samples 

were found to be 0.856, 0.886, and 0.891, respectively. In these 

samples, the person-based accuracy values were found to be 0.886, 
0.964, and 0.962 for those with “yes” prediction results, and 0.930, 

0.961, and 0.961 for those with “no” prediction results, respective-

ly. In the real dataset, the accuracy of the overall model was found 
to be 0.736. The person-based accuracy values were found to be 

0.783 in the patient who was predicted with stroke, and 0.868 in the 

patient who was predicted without stroke. Conclusion: Person-
based predictions consistently outperformed model-based results 

across datasets due to real-life individual heterogeneity, emphasiz-

ing the need for attention. Considering this diversity, person-based 
modeling is expected to produce a more realistic and clinically ap-

plicable model. 
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ÖZET Amaç: Bu çalışmanın amacı, “SHapley Additive exPlanations” 

yöntemi ile simüle ve gerçek veri setleri için ayrı ayrı kişi temelli 
tahmin modelleri oluşturmak ve elde edilen kişi temelli modellerin 

genel modellere göre daha geçerli ve uygulanabilir olup olmadığını 

göstermektir. Gereç ve Yöntemler: Simüle veri setleri sırasıyla 250, 
500 ve 1.000 örneklem büyüklükleriyle 13 bağımsız ve 1 bağımlı 

değişken içerirken, gerçek veri seti 11 değişkenden oluşmakta olup, 

826 hasta verisi içermektedir. Analizler için R (versiyon 4.1.2) prog-
ramlama dilindeki “bindata”, “shapper” ve “RWeka” paketleri kulla-

nılmıştır. Sınıflandırma yöntemleri olarak “Extreme Gradient 

Boosting”, Bagging, Rastgele Orman, Destek Vektör Makinesi ve 
Lojistik Regresyon kullanılmıştır. Veri seti 10-kat çapraz doğrulama 

kullanılarak değerlendirilmiş ve analizler 1.000 kez tekrarlanmıştır. 
Bulgular: 250, 500 ve 1.000 örneklem büyüklüğüne sahip veri setle-

rinde genel modelin doğruluk değerleri sırasıyla 0,856, 0,886 ve 0,891 

olarak bulunmuştur. Bu örneklem büyüklüklerinde kişi temelli doğru-
luk değerleri “evet” tahmin sonucuna sahip olanlar için sırasıyla 0,886, 

0,964 ve 0,962; “hayır” tahmin sonucuna sahip olanlar için ise sırasıyla 

0,930, 0,961 ve 0,961 olarak bulunmuştur. Gerçek veri setinde, genel 
modelin doğruluğu 0,736 olarak bulunmuştur. Kişi temelli doğruluk 

değerleri ise inme tahmini yapılan hastada 0,783, inme tahmini olma-

yan hastada ise 0,868 olarak bulunmuştur. Sonuç: Tüm veri setlerinde 
kişi temelli tahmin sonuçları, model bazlı sonuçlardan daha yüksek 

bulunmuştur. Bu gerçek hayatta kişiler arası heterojenite nedeniyle göz 

ardı edilmemesi gereken bir durumdur. Bu farklılık göz önünde bulun-
durularak, kişi temelli modelleme yapıldığında, modelin daha gerçekçi 

olacağı ve klinik kullanıma daha uygun hâle geleceği düşünülmektedir. 
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Nowadays, predictive modeling is one of the most popular and important methodologies used in clinical 

and health research.
1
 Risk assessment has been successfully applied in many areas, including diagnosis, 

prognosis, and the effect of treatment.
2,3 

The conventional method of modeling clinical outcomes involves 

constructing a singular predictive model using a dataset of individuals with known outcomes, followed by 

applying this model to forecast outcomes for upcoming individuals.
4
 This type of model is referred to as a 

population model, as its purpose is to be employed across an entire future population of individuals, aiming 

to exhibit strong average predictive performance across the entire population.
4,5

 Recent research in the field 

of personalized medicine indicates that the patient population displays heterogeneity, with each patient pos-

sessing distinct attributes, underscoring the significance of tailored, patient-specific predictions, suggestions, 

and interventions.
4
 

Person-based prediction models are customized for an individual patient and trained using information 

on characteristics from similar patients. Compared with overall models trained on all patients, it can produce 

more accurate risk scores and identify more relevant risk factors for each patient.
4
 The overall model cap-

tures information that is important to the entire patient population, but may miss information that is impor-

tant to individual patients and less important to the general population. Another option is to establish a pa-

tient-specific or “personalized” predictive model for each patient.
5
 The model is individualized for each pa-

tient, utilizing data from the patient themselves or those sharing clinically similar attributes. Given their dy-

namic training tailored to specific patients, personalized predictive models can harness the most pertinent 

patient data and effectively discern crucial patient-specific risk factors.
4
 The most important step for person-

based prediction is to identify the most important variables specific to that person. This type of approach is 

called person-based variable importance, which has recently been used frequently, especially in the field of 

health recently.
1,4

 With the importance of person-based variables, separate models can be created for indi-

viduals with the same characteristics, and better prediction results can be obtained with these models.
4,5

 The 

number of R packages created to solve the person-based variable importance problem in the literature is 

quite low. The most commonly used R packages are shapper and LIME. In the study, the shapper package 

was preferred because it can be applied to both qualitative and quantitative data and offers more advanced 

features. 

This study aimed to build person-based prediction models for each of the datasets generated by the 

SHapley Additive exPlanations (SHAP) method and a real dataset and to show that the obtained person-

based prediction models are more valid and applicable than overall models. 

    MATERIAL AND METHODS 

In this study, which was planned as a methodological study, three simulated datasets with different sample 

sizes and a real dataset from an open access database were used. Samples were randomly selected for per-

son-based analyses. 

SIMULATED DATASETS 

Correlation coefficients between dependent and independent variables were defined as (0.30-0.70) for all 

scenarios. Correlation coefficients between independent variables were designed in the range of (0.30-0.60). 

The datasets consist of 14 variables, with 13 independent variables and one dependent variable. The sample 

sizes were generated as 250, 500 and 1,000, respectively. 

REAL DATASET 

The original dataset was accessed from the Kaggle database and included 42,617 patients considered at risk 

of stroke.
6
 The dataset consists of 11 variables, including 10 independent [age, gender, body mass index 

(BMI), smoking status, hypertension, marital status, heart disease, average glucose level, work type, and 

residence type] and one dependent (presence of stroke) (Table 1). After removing the missing and incor-



 

İrem KAR et al. Turkiye Klinikleri J Biostat. 2023;15(3):171-81 

 

 173 

rectly entered data in the dataset, a sample of 826 (2% of the original data) was randomly selected from the 

remaining data, so as not to disturb the distribution of the original dataset, and the study was carried out us-

ing this sample. 

 

TABLE 1: Variables for stroke dataset. 
 

Variables Values 

Gender Female/male 

Age 19-90 

Hypertension No/yes 

Heart disease No/yes 

Marital status No/yes 

Work type Never worked/goverment/self-employed/private sector 

Residence type Urban/rural 

Average glucose level 60.06-250.89 

BMI 17.1-44.8 

Smoking status  No/yes 

Stroke No/yes 
 

BMI: Body mass index. 
 

SHAP  

SHAP, created by Lundberg and Lee, is a method for describing individual predictions and is a game-

theoretic approach. SHAP is based on the Shapley values in game theory. Shapley values correspond to the 

contribution measures of each feature in a machine learning model. SHAP can be implemented in Python 

(shap library) and R (DALEX and shapr packages) programming languages.
7 

STATISTICAL ANALYSIS 

In the analysis, bindata, shapper, DALEX and RWeka packages in the R (ver 4.1.2) programming language 

were used.
8-11

 InfoGain and Logistic Regression (LR) methods were used for variable importance. Extreme 

Gradient Boosting (XGBoost), Bagging, Random Forest (RF), Support Vector Machine (SVM), and LR 

were used as classification methods. The dataset was evaluated using 10-fold cross validation, and all ana-

lyzes were repeated 1,000 times.  

    RESULTS 

XGBoost, Bagging, RF, SVM and LR were used to evaluate the overall model performance for all datasets, 

and the best performance was achieved with the LR method. Therefore, the LR results for the overall model 

are presented. 

SIMULATED DATASETS 

In Figure 1, the variable importance was examined in a simulated dataset with 250 samples by using the 

variable importance tests of InfoGain and LR. The overall model consisted of x9, x1, x8, x3, x12, x13, x2 

and x10 variables according to the results of the variable importance test performed with the InfoGain 

method and clinical importance. As a result, 9 variables (8 independent, 1 dependent variable) were included 

in the study for the overall model and machine learning analyzes were performed using these variables 

(Figure 1A). The results of the variable importance test for each of the data sets including patients classified 

as yes and no are given in Figure 1B and Figure 1C. These results differ from the variable importance results 

for the overall model presented in Figure 1A. 
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FIGURE 1: Variable importance for 250 samples. A) Overall model, B) Patient classified as “yes”, C) Patient classified as “no”. 

 

For the overall model with 250 samples, the accuracy value was found to be 0.847 in patients with the 

outcome variable yes (classified as yes) and 0.864 in patients with the outcome variable no (classified as no). 

The accuracy value was 0.886 in the sample patient with the outcome variable yes, and 0.930 in the sample 

patient with the outcome variable no. As a result, the accuracy values of the sample patients were found to be 

higher than the values of the overall model (Table 2). 
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In Figure 2, the variable importance was examined in a simulated dataset with 500 samples by using In-

foGain and LR methods. The overall model consisted of x9, x1, x3, x8, x13, x12, x11 and x10 variables ac-

cording to the results of the variable importance test performed with the InfoGain method and clinical impor-

tance. As a result, 9 variables (8 independent, 1 dependent variable) were included in the study for the over-

all model and machine learning analyzes were performed using these variables (Figure 2A). The results of 

the variable importance test for each of the data sets including patients classified as yes and no are given in 

Figure 2B and Figure 2C. These results differ from the variable importance results for the overall model pre-

sented in Figure 2A. 

 

 

FIGURE 2: Variable importance for 500 samples. A) Overall model, B) Patient classified as “yes”, C) Patient classified as “no”. 
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For the overall model with 500 samples, the accuracy value was found to be 0.866 for patients with the 

outcome variable yes (classified as yes) and 0.906 for patients with the outcome variable no (classified as 

no). The accuracy value was 0.964 in the sample patient with the outcome variable yes, and 0.961 in the 

sample patient with the outcome variable no. As a result, the accuracy values of the sample patients were 

found to be higher than the values of the overall model (Table 2). 

 

 

TABLE 2: Performance measures for simulated datasets. 
 

Datasets Model  Accuracy F-measure MCC ROC area 

250 sample 

All samples 

No 0.864 0.864 

0.711 0.924 Yes 0.847 0.847 

Overall 0.856 0.856 

Patient 1 
No 0.114 

 
Yes 0.886 

Patient 2 
No 0.930 

Yes 0.070 

500 sample 

All samples 

No 0.906 0.890 

0.772 0.949 Yes 0.866 0.882 

Overall 0.886 0.886 

Patient 1 
No 0.036 

 
Yes 0.964 

Patient 2 
No 0.961 

Yes 0.039 

1,000 sample 

All samples 

No 0.900 0.892 

0.782 0.955 Yes 0.882 0.890 

Overall 0.891 0.891 

Patient 1 
No 0.038 

 
Yes 0.962 

Patient 2 
No 0.961 

Yes 0.039 

 

MCC: Matthew’s correlation coefficient; ROC: Receiver operating characteristic. 

 

 

In Figure 3, the variable importance was examined in a simulated dataset with 1,000 samples by using 

InfoGain and LR methods. The overall model consisted of x9, x1, x3, x12, x8, x13, x10 and x11 variables 

according to the results of the variable importance test performed with the InfoGain method and clinical im-

portance. As a result, 9 variables (8 independent, 1 dependent variable) were included in the study for the 

overall model, and machine learning analyzes were performed using these variables (Figure 3A). The results 

of the variable importance test for each of the data sets including patients classified as yes and no are given 

in Figure 3B and Figure 3C. These results differ from the variable importance results for the overall model 

presented in Figure 3A. 
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FIGURE 3: Variable importance for 1,000 samples. A) Overall model, B) Patient classified as “yes”, C) Patient classified as “no”. 

 

For the overall model with 1,000 samples, the accuracy value was 0.882 in patients with the outcome 

variable yes (classified as yes) and 0.900 in patients with the outcome variable no (classified as no). The ac-

curacy value was 0.962 in the sample patient with the outcome variable yes, and 0.961 in the sample patient 

with the outcome variable no. As a result, the accuracy values of the sample patients were found to be higher 

than the values of the overall model (Table 2). 
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STROKE DATASET 

In Figure 4, the variable importance was examined in the stroke dataset by using InfoGain and LR methods. 

As a result of the variable importance test performed with the InfoGain method and according to clinical im-

portance, the overall model consisted of age, hypertension, average glucose level, heart disease, marital 

status, gender, work type and BMI variables. As a result, 9 variables (8 independent, 1 dependent variable) 

were included in the study for the overall model and machine learning methods were applied (Figure 4A). 

The results of the variable importance test for each of the data sets including patients classified as stroke and 

non-stroke are given in Figure 4B and Figure 4C. These results differ from the variable importance results 

for the overall model presented in Figure 4A. 
 

 

FIGURE 4: Variable importance for the stroke dataset. A) Overall model, B) Patient classified as “yes”, C) Patient classified as “no”.    BMI: Body mass index. 
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In the stroke dataset of 826 patients, the accuracy value for the overall model was 0.733 in patients with 

stroke and 0.740 in patients without stroke. The accuracy value was 0.783 in the sample patient with stroke, 

and 0.868 in the sample patient without stroke. As a result, the accuracy values of the sample patients were 

found to be higher than the values of the overall model (Table 3). 

 

TABLE 3: Performance measures for stroke dataset. 
 

Datasets Model  Accuracy F-measure MCC ROC area 

Stroke dataset 

Model 

No 0.740 0.736 

0.472 0.805 Yes 0.733 0.736 

Overall 0.736 0.736 

Patient 1 
No 0.217 

 
Yes 0.783 

Patient 2 
No 0.868 

Yes 0.132 
 

MCC: Matthew’s correlation coefficient; ROC: Receiver operating characteristic. 

 

    DISCUSSION 

The conducted analyses led to the observation of disparities in both variable importance and performance 

outcomes between the overall model and the person-based results. It was emphasized that the importance of 

person-based variables and classification are crucial for improving the prediction results, and it was seen that 

the results were more accurate when models were created according to person-based characteristics while 

predicting.  

In the literature, the LIME method is generally used for person-based variable importance. It is thought 

that the reasons for this are that it has more resources, ready-to-use codes and its codes are more understand-

able. The rationale for incorporating the SHAP method in our study resides in its versatile features, compati-

bility across various data types, and our objective of providing an illustrative exemplar to enrich the existing 

literature. 

Pan et al. used LR, AdaBoost (Adaptive Boosting), Gradient Boosting Decision Tree (GBDT) and Cat-

Boost methods for the overall prediction results in their study with 123 coronavirus disease-2019 patients 

and achieved the highest performance with the XGBoost method. In the same study, when the person-based 

prediction results with the LIME method were examined on the sample 4 patient data, the accuracy values of 

the 2 patients who were predicted to survive were found to be 0.980 and 0.580, respectively, and the accu-

racy values of the 2 patients who were predicted to die were found to be 0.850 and 0.680, respectively.
12

 

Hong et al., in their study on 1,585 heart patient data, evaluated the prediction results of the overall model 

with LR, SVM, Decision Tree, RF, XGBoost and Light Gradient Boosting (LGBoost) methods and achieved 

the best prediction results with the RF method. In the study, the person-based variable importance of two pa-

tients was also examined using the LIME method, and the predicted accuracy values were found to be 0.680 

and 0.920, respectively.
13

 Lin et al. evaluated the performance of the overall model with LR, RF, SVM, 

GBDT and Deep Neural Network (DNN) methods in their study on 372 patients to predict the risk of recur-

rence after endovascular treatment, and reported that the model with the best performance was obtained with 

the GBDT method. They reported that with the LIME method, they found the person-based prediction values 

of two patients to be 0.680 and 0.640.
14

 In the study of An et al. to predict the risk of recurrence in 1,574 

cancer patients, XGBoost, SVM, RF and LR methods were used for one and two-year prediction, and the 

best result was obtained with the XGBoost method. They found the person-based prediction results with the 

LIME method to be 0.810 and 0.720, respectively.
15

 Alabi et al. used the Voting Ensemble, LGBoost, 

XGBoost, RF, and Extreme Random Trees methods in their study with 3,164 oropharyngeal cancer patients 

and reported that they achieved the best performance with the Voting Ensemble method. They also reported 
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that they evaluated the person-based variable importance result of a patient with the LIME method and found 

the accuracy value as 100.0.
16

 Chan et al. used XGBoost, RF, and LR methods to predict 30-day, 90-day, 

and 1-year mortality in a study involving 6,994 critically ill ventilated patients, and reported that they 

achieved the highest accuracy value with the XGBoost method (0.858, 0.839, and 0.816, respectively). In the 

study, when the person-based variable importance for 2 patients was examined by the SHAP method, the ac-

curacy values for mortality were found to be 0.230 and 0.710, respectively.
17

 In a multicenter study by Yin et 

al., in which 1,012 patients with acute pancreatitis were included, Gradient Boosting, XGBoost, RF, Gener-

alized Linear Models, DNN, and LR methods were used for the overall model, and the best performance 

measures were achieved with the XGBoost method. When the person-based prediction results for 6 patients 

were examined by the LIME method, the accuracy values were found to be 0.980, 0.980, 0.960, 0.840, 

0.950, and 0.830, respectively.
18

 Zheng et al. used XGBoost, RF, Neural Network, LR, Gaussian Naive 

Bayes, and k-nearest Neighbors methods in their study on 10,476 patients with ischemic stroke, and the 

highest accuracy value was obtained with XGBoost and RF methods (Accuracy: 0.840). In the same study, 

the person-based variable importance for four patients was examined with the LIME method, and the accu-

racy values for 2 patients who were predicted to have ischemic stroke were 0.980 and 0.650, respectively, 

and the accuracy values for 2 patients who were predicted to have no ischemic stroke were found to be 0.930 

and 0.610, respectively.
19

 In the scope of our study, the accuracy metrics derived from the overall model 

aligned comparably with the established literature and demonstrated commendable classification proficiency. 

Diverging from conventional methodologies, our inquiry delved into person-based prediction outcomes via 

the SHAP method, yielding superior predictive outcomes in contrast to both the overall model and extant lit-

erature findings. 

    CONCLUSION 

Discrepancies exist between person-based variable importance and classification outcomes as compared to 

model-based results. This disparity underscores the necessity of acknowledging the heterogeneous interper-

sonal framework inherent in real-world scenarios. The adoption of person-based variables is postulated to 

confer enhanced realism and heightened applicability for clinical contexts. Contrasting the person-based 

models with the overall model outcomes, it becomes evident that the former yield more nuanced and ele-

vated classification performance. 
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