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ABSTRACT Objective: In order to prevent model estimation er-

rors and deviations in high-dimensional longitudinal studies, risk 
models are established through penalized methods. The aim of this 

study is to examine the effect of small cluster effects on the gener-

alized estimating equations (GEE) and penalized GEE (PGEE) 
model performances in high-dimensional longitudinal data. Mate-

rial and Methods: A simulation study was designed to compare 

the GEE and PGEE model performances, Type I error rates, and 
power in two-period longitudinal data structures with different clus-

ter sizes (n=20, 30, 50, 100, 200), different numbers of predictors 

(p=10, 20, 50) and different correlation levels between predictors 

(r=0.20, 0.50, 0.80). Results: It was observed that the GEE coef-

ficient estimates were misleading and inconsistent, the Type I 
error rates were high, and the power of the test was weak at insuf-

ficient cluster sizes and high correlations between predictors. 

Even when the number of predictors and cluster size were in the 
balance (p=10, n=100, 200), Type I error rates were obtanied 

high for GEE. Increasing the cluster size was not enough to re-

duce the Type I error rate of GEE. The PGEE produced more 
successful results than GEE in all conditions. The power of PGEE 

increased to over 80% in all scenarios. Conclusion: The PGEE 

yielded more consistent results by controlling the relationships 
both within the cluster and between the predictors. In high-

dimensional longitudinal studies, it was observed that the use of 

PGEE is more effective than GEE. 
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ÖZET Amaç: Yüksek boyutlu boylamsal çalışmalardaki model tah-

min hatalarının ve sapmaların önüne geçebilmek amacıyla risk mo-
delleri, cezalı yöntemler aracılığı ile oluşturulur. Bu çalışmada amaç; 

yüksek boyutlu boylamsal veride küçük küme büyüklüğünün etkisi-

nin, genelleştirilmiş tahmin eşitlikleri [generalized estimating equa-
tions (GEE)] ve cezalı genelleştirilmiş tahmin eşitlikleri [penalized 

generalized estimating equations (PGEE)] model performansları üze-

rine etkisini incelemektir. Gereç ve Yöntemler: Farklı küme büyük-
lüklerine (n=20, 30, 50, 100, 200), farklı açıklayıcı değişken sayıları-

na (P=10, 20, 50) ve açıklayıcı değişkenler arasında farklı korelasyon 

düzeylerine sahip (r=0.20, 0.50 ve 0.80) iki periyotlu boylamsal veri 

yapılarında GEE ve PGEE model performanslarını, Tip I hata oranla-

rını ve testin gücünü karşılaştırmak amacıyla simülasyon çalışması 
kurgulanmıştır. Bulgular: Yetersiz küme büyüklüklerinde ve açıkla-

yıcı değişkenler arasındaki yüksek korelasyonlarda, GEE katsayı 

tahminlerinin yanıltıcı ve tutarsız olduğu, Tip I hata oranlarının yük-
sek ve testin gücünün ise zayıf olduğu gözlemlenmiştir. Değişken 

sayısı ile küme büyüklüğünün dengede olduğu durumlarda dahi 

(P=10, n=100, 200) GEE için Tip I hata oranları yüksek elde edilmiş-
tir. Küme büyüklüğünü artırmak GEE’nin Tip I hata oranını düşür-

mek için yeterli olmamıştır. PGEE ise her koşulda GEE’den daha 

başarılı sonuçlar üretmiştir. PGEE’nin gücü tüm senaryolarda %80’in 
üzerine çıkmıştır. Sonuç: PGEE küme içi ve kümeler arası ilişkileri 

kontrol altında tutarak GEE’ye göre daha geçerli sonuçlar üretmiştir. 

Yüksek boyutlu boylamsal çalışmalarda GEE yerine PGEE’nin kulla-
nımın daha etkili olduğu gözlemlenmiştir. 
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High-dimensional longitudinal data (HDLD), which are gathered by measuring many variables (P) from 

a small group (n) of individuals over many time points, have been frequently seen in many areas of medical 

studies.
1
 It causes inevitably “large P, small n” scenario and a high-dimensional data structure. If the cluster 

sizes (n) are insufficient, most of the statistical methods cannot control the Type-I error.
2
 The generalized 

estimating equation (GEE) the most popular method to analyze longitudinal data, yields consistent and unbi-

ased estimates of the regression coefficients if the cluster sizes are enough larger even though the working 

correlation matrix is misspecification among the responses.
3
 But, the GEE estimate is biased under a finite 

sample, particularly for a small n. This may result in an incorrect inference and inflate the Type I error.
4
 
 

The other important issue is separation or overfitting in HDLD for small cluster sizes if the outcome is 

binary. If a single covariate or a linear combination of covariates predicts the binary response exactly, this is 

considered “separation”. Especially the large number of covariates causes separation in HDLD.
5
 
 

Various variable selection methods were proposed, such as the quasi-likelihood information criterion 

(QIC), Mallows’s Cp, and the Bayesian information criterion with quadratic inference function (QIF) for GEE 

in longitudinal applications.
6-8 

On the other hand, the novel variable selection methods based on penalized func-

tions, which exclude unrelated covariates by shrinking their coefficients to zero, estimate the parameters asso-

ciated with selected covariates simultaneously, and minimize modeling bias, have been expanded with different 

penalty functions for HDLD applications. Fu introduced penalized generalized estimating equations (PGEE) 

with the bridge penalty and the least absolute shrinkage and selection operator (LASSO) penalty.
9
 The 

smoothly clipped absolute deviation approach (SCAD) was expanded by Fan and Li for partially linear models 

using longitudinal data.
10

 The SCAD penalty was generalized by Dziak and Dziak and Li for longitudinal gen-

eralized linear models; and the SCAD-penalized GEE was developed by Wang et al. for analyzing longitudinal 

data with high-dimensional covariates for variable selection and estimation.
11-13

 

Researchers frequently have some challenges to obtain a complete and balanced data to test their hy-

pothesis due to small target groups, rare disease studies, difficult reach, cost of data collection, or dropouts.
14

 

It is not always possible to encounter ideal data structures particularly in longitudinal studies. But some re-

searchers want to avoid from missing data particularly if they study for rare diseases or cancer research. For 

example, death can occur in a short time in sickle cell anemia patients who have a painful vaso-occlusive cri-

sis. Therefore, studies for these patients can generally be limited to two periods with the prescience of the 

physician because patients may die at the third or fourth period. So, they can work with a limited data struc-

ture instead of ignoring missing values and causing bias.  

The aim of this simulation study is to investigate the effects of large P, small n, and different correlation 

levels on the Type I error, power, and model performances of the GEE and the PGEE with the SCAD pen-

alty function.  

    MATERIAL AND METHODS 

GENERALIZED ESTIMATING EQUATIONS 

Suppose a sample of n subjects chosen at random. Yi=(Yi1, …,     
)

T
 is the mi x p matrix of correlated re-

sponses for subject i at time t with t=1, 2, …, mi where i=1, …, n.  Xi=(Xi1, …,     
)
T
 is a mi x p vector of 

covariates measured at the same time as the responses for subject ith. Assume that observations from the 

same subject are correlated, while observations from different subjects are independent. We suppose that Y 

is generated from a distribution in the exponential family. Marginal mean of Yij is                

                 
     where g(.) is the inverse of the known link-function, β=(β1, …, βp)

T
 is an unknown 

px1 vector of regression parameters. Vi denotes the variance of Yij Vi =Var (Yi|Xit) =          with a variance 

function  (⋅) and an overdispersion parameter  . According to Liang and Zeger, GEE uses a common work-

ing correlation matrix for correlated responses of each subject in longitudinal studies, and they recommend 

estimating Vi via a working correlation matrix.
15
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As a working covariance matrix       
   

    
   

, where                        
   is a diagonal 

matrix for known variance function  and, RT is the true and unknown correlation matrix of Yi. For this reason, 

Liang and Zeger proposed to use a working correlation matrix Ri(α), which is completely specified by the 

parameter α vector, instead of RT. The most commonly used working correlation structures are independence, 

autocorrelation, unstructured, exchangeable, symmetry, and fix. Even though Ri(α) is a mis-specified, pa-

rameter estimates are consistent and asymptotically normal. Finally, regression coefficient β is estimated by 

solving the following estimating equation as (1).
15

 

     =  Ai
 n

i=1  i

-1
  Yi- i

  ) =0        (1) 

PENALIZED GENERALIZED ESTIMATING EQUATIONS 

Wang et al. proposed to estimate  , which solves the following set of penalized estimating equation as (2);
13

 

    
 
      

 
        

 
        

 
        (2) 

where, Sn  n =n
-1   i

Tn
i= Ai

1 2( 
n
) R   -1 

Ai

-1 2
( 

n
) Yi- i

( 
n
) =0 are the estimating functions defining 

the GEE, q
 n

   
n
  = q

 n
   

n1
  , … , q

 n
   

npn
   

T

 is a p-n dimensional vector of penalty functions, and 

sign  
n
 = sign  

n1
 , … , sign   

npn
  

T

with sign(t)=I(t>0)- I(t<0). The shrinking quantity is determined by 

the tuning parameter  n. The q
 
     sign( ) stands for the component-wise product.  

The penalty function          is equal to zero if value of      is large on the other hand, the 

        takes a large value if value of      is a small value. So, high valued      , the generalized estimating 

function         which is the jth component of       , is not penalized; as the penalty level is high,     is 

approximately zero (but not equal). As a result, the penalty function          aims to shrink estimates of 

small coefficients to zero. When an estimated coefficient is shrunken to zero, it is removed from the model 

that is ultimately chosen. Briefly, penalized estimation equations shrink small coefficients to zero, so they 

can perform variable selection while producing robust estimators of nonzero coefficients.
13

 

According to Fan and Li, the three important characteristics of a successful penalty function estimator 

simultaneously are unbiasedness, sparsity, and continuity.
10 

SCAD penalty has all these features. The non-

convex SCAD penalty allows selection of consistent variables avoiding over penalizing large coefficients 

and shrinks the coefficients of redundant covariates to exactly zero.
11

 Because of these features, in this study, 

we considered the nonconvex SCAD penalty, which was given by (3), 

q
 n

   =  n  I     n  
   n-   

  -1  n
 I    n                                                                                                   (3) 

Where     and some     and I(.) is an indicator function. if c is true, I(c)=1 otherwise is zero 

b+=bI(b>0) for real number b. Fan and Li suggested taking  =3.7.
11

 

TUNING PARAMETER SELECTION 

In penalized regression methods, both the robustness and consistency of the obtained estimators and the de-

termination of important variables depend on the selection of the tuning parameter in the penalty function. 

According to tuning parameter, over and under penalization problems are possible and cause deviations in 

the estimated penalty functions.
12 

K-fold cross-validation (CV) has been suggested by Cantoni et al. to select 

the tuning parameter.
7
 Since there is no likelihood function in the PGEE framework, it has been extended by 

including the working correlation structure in the CV.
16
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SIMULATION STUDY  

To evaluate the effects of cluster sizes, number of periods and variables, and correlation between variables 

on Type I error rates, power of the test, and model performances for GEE and PGEE. R (Version 4.2.2) pro-

gramming language was used. We generated correlated binary response data from binom distribution by 

rbin(… ) function in the “SimCorMultR” package with cluster sizes were n=20, 30, 50, 100, and 200. The 

explanatory variables were derived from the multivariate normal distribution with 0 mean, 1 standard devia-

tion and correlations  =0.20 (weak), 0.50 (medium), and 0.80 (high). The number of explanatory variables 

in each cluster was taken as P=10, 20, and 50. This package simulates correlated binary responses assuming 

a regression model for the marginal probabilities. For this, the working correlation structure was selected 

only as “exchangeable” and  =0.40 since we studied only two periods. Also, for simulated binary response 

we determined initial beta coefficients as   =(                     ) for     ,         ,         , 

and        . These coefficients were determined according to the results of our doctorate thesis data in 

order to take into account the potential difficulties encountered in real application data. 45 different scenarios 

with 500 replications were created for each cluster sizes. “geepack” and “PGEE” packages were used for 

GEE and PGEE analysis. We selected only the non-convex SCAD penalty for PGEE. Type I error ( ) rates 

and the power of the test were recorded. In order to evaluate the model performances of the GEE and PGEE, 

the median squared error (MEDSE) and BIAS statistics were calculated using the “mlr3measures” package. 

MEDSE values of regression coefficients are calculated for s. simulation as MEDSE  medians    s   
s
 
2
 . 

MEDSE is more resistant to outliers and is used like the mean squared error (MSE). MEDSE values must be 

close to zero for model accuracy.
17 

Also, Bias is defined for s. simulation as    
s
  

s
 . We calculated median 

of bias values due to outliers. 

    RESULTS 

The Type I error rates are shown in Figure 1 for GEE and PGEE according to number of variables (P=10, 20, 

and 50), cluster sizes (n=20, 30, 50, 100, and 200), and correlation levels (r=0.20, 0.50, and 0.80). The re-

sults of the power for GEE and PGEE are given in Figure 2. Generally, it was observed that Type I error 

rates for the PGEE were lower than for the GEE in all scenarios. While the Type I error rates for the GEE 

were negatively affected by the high correlation, the Type I error rates for the PGEE were quite low in all 

scenarios under the same conditions. 

In weak, medium, and high correlations, although it was observed that Type I errors decreased when 

the cluster sizes were balance according to the number of variables, this was not effective for the GEE re-

sults. The Type I errors for the GEE could not reach the statistical significance level (Figure 1). For P=10 

and 20, they were calculated as 0.50 or above, and the maximum power was 44%. It was observed that 

PGEE protected the statistical significance level and power was obtained at 90% or above even though the 

cluster sizes were equal to the number of variables and insufficient (n=20, P=20). The same results were 

observed in other scenarios for the PGEE. It was seen that the high correlation did not affect the PGEE 

(Figure 2). 

Type I errors of GEE could not be calculated for small cluster sizes (n=20) and large variables (P=50) 

due to a convergence problem. Although increasing the cluster sizes solved the convergence problem in 

GEE, it was observed that the Type I error rates were close to 1 at all correlations. For this situation, the 

power of the GEE was calculated quite low. On the other hand, in small cluster sizes (n=20, 30, and 50) and 

high dimensionality (P=50), all Type I errors of PGEE were lower than the GEE, and the power of PGEE 

was 90% and above. 
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PGEE: Penalized generalized estimating equation. 

FIGURE 1: Type I error rates for PGEE and GEE. 

 

 

 
PGEE: Penalized generalized estimating equation. 

FIGURE 2: The power for PGEE and GEE. 
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PGEE has derived more successful results than GEE for all scenarios. When both small cluster 

sizes and increasing correlation for P=50, Type I errors for PGEE were calculated above 0.05, and it has 

been observed that they increase to 10-20% levels. In this case, although the power decreases, it  

has been observed that it maintains 80% or above power. While PGEE has not been affected by small 

cluster sizes, the GEE has been negatively affected by both insufficient cluster sizes and high correla-

tion. 

The comparisons of model performances for the GEE and PGEE were presented in Table 1, Table 2, 

and Table 3. The model performances of PGEE and GEE produced successful results for P=10. However, 

the GEE was more affected by the increase in correlation in small clusters (n=20, 30) than in large clusters 

(n=50, 100, 200). As the cluster sizes increased, MEDSE and BIAS values approached 0, and GEE's 

model performance improved. Otherwise, the PGEE was not affected by the low cluster number and  

high correlation. It was observed that PGEE gave more consistent results than the GEE in all scenarios 

(Table 1). 

 

 

TABLE 1: Model performances measurements of PGEE and GEE for P=10. 
 

P=10  r=0.20 r=0.50 r=0.80 

  MEDSE BIAS MEDSE BIAS MEDSE BIAS 

n=20 

PGEE 
<0.001 0.001 <0.001 0.001 <0.001 0.001 

(<0.001) (0.000) (<0.001) (0.000) (<0.001) (0.000) 

GEE 
0.168 0.006 0.229 -0.003 0.496 -0.002 

(0.346) (0.157) (0.474) (0.100) (0.858) (0.079) 

n=30 

PGEE 
<0.001 0.001 <0.001 0.001 <0.001 0.001 

(<0.001) (0.000) (<0.001) (0.000) (<0.001) (0.000) 

GEE 
0.062 0.003 0.100 -0.003 0.217 0.001 

(0.077) (0.084) (0.113) (0.063) (0.260) (0.052) 

n=50 

PGEE 
<0.001 0.001 <0.001 0.001 <0.001 0.001 

(<0.001) (0.000) (<0.001) (0.000) (<0.001) (0.000) 

GEE 
0.030 -0.001 0.043 0.000 0.098 -0.001 

(0.033) (0.055) (0.043) (0.041) (0.116) (0.034) 

n=100 

PGEE 
0.000 0.001 <0.001 0.001 <0.001 0.001 

(0.013) (0.000) (<0.001) (0.000) (<0.001) (0.000) 

GEE 
0.013 0.001 0.019 0.002 0.047 -0.002 

(0.012) (0.040) (0.020) (0.028) (0.051) (0.020) 

n=200 

PGEE 
0.000 0.001 <0.001 0.001 <0.001 0.001 

(0.007) (0.003) (<0.001) (0.000) (<0.001) (0.000) 

GEE 
0.006 0.002 0.010 0.000 0.023 0.000 

(0.006) (0.027) (0.009) (0.019) (0.022) (0.014) 
 

All MEDSE and BIAS values were summarized by median (inter quantile range); PGEE: Penalized generalized estimating equation; MEDSE: Median squared error. 

 

The GEE produced very large MEDSE values when cluster sizes and number of variables were unbal-

anced (P=20; n=20, 30). GEE was insufficient in these clusters at all correlation levels. On the other hand, 

when cluster sizes increased, the MEDSE values decreased below 0.05. MEDSE values were estimated near 
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zero for medium and high correlation with increasing cluster sizes, even though GEE was impacted by corre-

lation in small cluster sizes. The GEE model was weak compared to the PGEE model in all correlations 

where the number of variables was equal to or close to the number of clusters (Table 2). 

 

TABLE 2: Model performances measurements of PGEE and GEE for P=20. 
 

P=20  r=0.20 r=0.50 r=0.80 

  MEDSE BIAS MEDSE BIAS MEDSE BIAS 

n=20 

PGEE 
0.000 0.001 0.000 0.001 0.000 0.001 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GEE 
2908.340 0.148 5568.850 0.022 14783.790 -0.047 

(50147.700) (10.088) (5.66E+28) (7.624) (2.53E+29) (7.858) 

n=30 

PGEE 
0.000 0.001 0.000 0.001 0.000 0.001 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GEE 
0.244 -0.005 0.499 -0.003 1.105 0.000 

(3.39E+28) (0.135) (7.50E+28) (0.117) (1.84E+29) (0.076) 

n=50 

PGEE 
0.000 0.001 0.000 0.001 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GEE 
0.041 0.002 0.043 -0.001 0.140 0.000 

(0.040) (0.037) (0.043) (0.024) (0.123) (0.019) 

n=100 

PGEE 
0.000 0.000 0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GEE 
0.015 0.000 0.022 0.001 0.050 0.000 

(0.010) (0.024) (0.017) (0.016) (0.038) (0.012) 

n=200 

PGEE 
0.000 0.001 0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GEE 
0.006 0.001 0.010 0.000 0.023 0.000 

(0.004) (0.015) (0.007) (0.009) (0.015) (0.008) 
 

All MEDSE and BIAS values were summarized by median (inter quantile range); PGEE: Penalized generalized estimating equation; MEDSE: Median squared error.  

 

 

Low cluster sizes and high correlation had no impact on the PGEE model when P=50. The problem of 

convergence arose in GEE due to an increase in the number of variables at small cluster sizes (n=20), and 

GEE did not work. In all cluster sizes up to n=200, the MEDSE and BIAS values of GEE were far from 0. 

We saw that the PGEE model gave more consistent results than the GEE (Table 3). As a result, it was ob-

served that the PGEE model was not affected by low cluster sizes and high correlation when P=10, 20, and 

50. Also, we know that that an insufficient cluster size, an unbalanced distribution of occurrence and non-

occurrence for the outcome variable, a large number of explanatory variables, and high within-cluster corre-

lations cause overfitting. The robust sandwich variance estimator of GEE generally provides poor estimators 

due to small cluster size and over-fitting.
5
 We have observed that the model performances results of GEE 

were inconsistent and unreliable because of overfitting for n=20, 30, and 50, while P=20, and 50. Also, the 

same BIAS values were calculated negatively because the predicted values were so small due to overfitting 

(Table 2 and Table 3).These models were not useful. 
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TABLE 3: Model performances measurements of PGEE and GEE for P=50. 
 

P=50  r=0.20 r=0.50 r=0.80 

  MEDSE BIAS MEDSE BIAS MEDSE BIAS 

n=20 

PGEE 
0.000 -0.097 0.000 -0.128 0.000 -0.113 

(0.000) (0.339) (0.000) (0.185) (0.000) (0.208) 

GEE 
-- -- -- --- -- -- 

-- -- -- -- -- -- 

n=30 

PGEE 
0.000 0.128 0.000 0.041 0.000 -0.012 

(0.000) (0.307) (0.000) (0.273) (0.000) (0.124) 

GEE 
104.820 -0.813 166.640 -0.817 415.030 -0.826 

(128.670) (0.296) (171.500) (0.165) (467.390) (0.107) 

n=50 

PGEE 
0.000 0.128 0.000 -0.014 0.000 -0.002 

(0.000) (0.262) (0.000) (0.083) (0.000) (0.063) 

GEE 
30.160 -1.407 46.280 -1.411 118.520 -1.413 

(16.270) (0.482) (25.540) (0.288) (73.580) (0.265) 

n=100 

PGEE 
0.000 -0.030 0.000 0.001 0.000 -0.002 

(0.000) (0.214) (0.000) (0.034) (0.000) (0.037) 

GEE 
17.740 -3.888 27.350 -3.958 69.790 -3.991 

(7.740) (1.723) (12.820) (1.520) (31.910) (1.635) 

n=200 

PGEE 
0.000 -0.012 0.000 0.001 0.000 0.000 

(0.000) (0.030) (0.000) (0.027) (0.000) (0.024) 

GEE 
0.290 -0.218 0.450 -0.210 0.860 -0.173 

(796.920) (16.648) (1684.910) (17.088) (915.020) (8.842) 
 

All MEDSE and BIAS values were summarized by median (inter quantile range); PGEE: Penalized generalized estimating equation; MEDSE: Median squared error.  

 

 

    DISCUSSION 

In this study, we evaluated the GEE and PGEE for P>n in low periods and cluster sizes. The sandwich esti-

mators of beta coefficients in the GEE approach are asymptotically consistent and unbiased. However, pre-

serving these asymptotic properties depends on the cluster sizes.
18

 It is recommended that the number of 

clusters should be at least 30, especially if the response variable is binary, and at least 50 for the continuous 

or discrete response variable. Otherwise, the asymptotic unbiasedness of the estimators lost and the Type I 

error rates of the coefficients increases for GEE.
19

 In cases where the cluster sizes cannot be increased, the 

sandwich estimators such as Morel et al., and Firth were recommended.18,20-26 According to our results, al-

though the number of variables and cluster sizes were not only balanced (P=10, n=100, 200), but also close 

to each other (P=10, 20, 50; n=20, 30, 50), the Type I error rates were much higher, and the power of the test 

was much lower for the GEE results than for the PGEE results. Also, the MEDSE and BIAS values of the 

GEE coefficients were calculated to be very large for the GEE. In these scenarios, while increasing the clus-

ter sizes improved the model performance of GEE, the MEDSE and BIAS values for PGEE were calculated 

close to zero or smaller in all scenarios. Although there has been a rich literature on variable selection or 

small cluster sizes for longitudinal data, our simulation study differs from these in that the cluster sizes, and 

the number of periods is very small. 
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The number of periods is a factor that affects the power of the GEE. Ma et al. showed that the increase 

in the number of periods has eliminated the negative effects of the low cluster sizes.
16

 In our study, since we 

consider the challenges of study design for rare diseases, the number of periods was kept constant at two 

(k=2). On the contrary GEE, PGEE has protected Type I error, power, and model performance successfully 

even if low number of periods. In order to see the effect of the number of periods on the power in the case of 

P>n, this study is planned with different period numbers in the future. 

The overfitting is another negative effect of the imbalance between the variable and the cluster sizes on 

the binary response variables. Although “bias correction” or “bias reduction” methods were used to control 

the increase in bias due to the low cluster sizes, they were insufficient to solve the overfitting problem for 

P˃n. Mondol and Rahman’s only examined the effect of overfitting of small cluster sizes and GEE with 

Firth’s type penalty was proposed to reduce the effect of low cluster sizes in this study.
3
 Although GEE is 

frequently insufficient, Mondol and Rahman found that PGEE achieves convergence even in the presence of 

complete or quasi-complete separation.
3
 Additionally, they showed how PGEE is superior to GEE in terms 

of the bias of the regression coefficients under near-to-complete separation. Similarly, Gosho et al. showed 

that in small samples, PGEE will be a better choice than GEE and bias-corrected GEE for assessing sparse 

binary data.
4
 But the impact of P>n in small sample was not investigated in these studies. We did not set a 

simulation for separation and sparse, but we observed that complete separation occurred at P>n in GEE re-

sults and GEE didn’t work particularly at P=50, and n=20. Similar to these studies we observed that the 

PGEE was superior than the GEE in the presence of complete separation. No study has been found in the lit-

erature that compares the GEE and PGEE model performances in the case of P>n, where there is overfitting, 

highly correlated covariates, small cluster sizes, and low periods. For this reason, this study is the first in this 

field. 

    CONCLUSION 

Increasing the cluster size was not sufficient to decrease the Type I error rate and increase the power of GEE. 

High correlations between variables negatively affected the reliability of GEE coefficients and created diffi-

culties in their interpretation in small cluster sizes. The PGEE generated more reliable and reasonable results 

than GEE, despite the low number of clusters and high correlation between the variables.  

The model performances of the GEE were too much low, also. We observed major deviations in the 

GEE estimations. The MEDSE and BIAS values were calculated close to 0 or smaller in all scenarios for 

PGEE. The PGEE yielded more consistent results by controlling the relationships both within the cluster and 

between the variables despite lower cluster sizes, periods, and complete separation. 
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