
iagnostic, therapeutic and prognostic tools are the basic require-
ments for evaluation of clinical practice in any health care service.
It is obviously required to check the performance of newer ad-
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Bayesian Concordance Correlation Coefficient
with Application to Repeatedly Measured Data

AABBSS  TTRRAACCTT  OObbjjeeccttiivvee::  In medical research, Lin's classical concordance correlation coefficient (CCC)
is frequently applied to evaluate the similarity of the measurements produced by different raters or
methods on the same subjects. It is particularly useful for continuous data. The objective of this
paper is to propose the Bayesian counterpart to compute CCC for continuous data. MMaatteerriiaall  aanndd
MMeetthhooddss:: A total of 33 patients of astrocytoma brain  treated in the Department  of Radiation On-
cology at Malabar Cancer Centre is enrolled in this work. It is a continuous data of tumor volume
and tumor size repeatedly measured during baseline pretreatment workup and post surgery follow-
ups for all patients. The tumor volume and tumor size are measured separately by MRI and CT scan.
The agreement of measurement between MRI and CT scan is calculated through CCC. The statis-
tical inference is performed through Markov Chain Monte Carlo (MCMC) technique. RReessuullttss::
Bayesian CCC is found suitable to get prominent evidence for test statistics to explore the relation
between concordance measurements. The posterior mean estimates and 95% credible interval of
CCC on tumor size and tumor volume are observed with 0.96(0.87,0.99) and 0.98(0.95,0.99) re-
spectively. CCoonncclluussiioonn:: The Bayesian inference is adopted for development of the computational al-
gorithm. The approach illustrated in this work provides the researchers an opportunity to find out
the most appropriate model for specific data and apply CCC to fulfill the desired hypothesis.

KKeeyy  WWoorrddss::  Bayes factor; MCMC; repeatedly measured data; CCC; CT-MRI; tumor size

ÖÖZZEETT  AAmmaaçç::  Tıbbi araştırmalarda, aynı denekler üzerinde farklı değerlendiriciler veya yöntemler
tarafından elde edilen ölçümlerin yakınlığını değerlendirmek için Lin’in klasik uyum korelasyon
katsayısı sıklıkla kullanılmaktadır. Bu, özellikle sürekli veriler için faydalıdır. Bu makalenin amacı
sürekli veriler için uyum korelasyon katsayısının hesaplanacağı bayesci karşılığını sunmaktır. GGeerreeçç
vvee  YYöönntteemmlleerr::  Bu çalışmada, Malabar Kanser Merkezi Radyasyon Onkolojisi departmanındaki Top-
lam 33 Astrositoma beyin tümörü hastası kayıtlıdır. Bu, tüm hastalar için temel ön tedavi tetkiki ve
ameliyat sonrası izlem süresince tümör volümü ve boyutunun tekrarlı olarak ölçüldüğü bir sürekli
veridir. Tümör volümü ve tümör boyutu manyetik rezonans görüntüleme (MRG) ve bilgisayarlı
tomografi (BT) taramalarıyla ayrı ayrı ölçülmüştür. MRG ve BT taraması arasındaki ölçüm uyumu
da CCC aracılığıyla hesaplanmaktadır. İstatistiksel çıkarım Markov Zinciri Monte Carlo (MCMC)
yöntemi ile yapılmaktadır. BBuullgguullaarr::  Bayesci CCC, uyum ölçümleri arasındaki ilişkiyi araştırmak için
test istatistiklerine dair belirgin kanıt elde etmede uygun bulunmuştur. Tümör boyutu ve tümör
volümündeki CCC için sonsal ortalama tahminleri ve %95 güven aralığı sırasıyla 0,96 (0,87, 0,99)
ve 0,98 (0,95, 0,99)’dir. SSoonnuuçç::  Bayesci çıkarım hesaplama algoritmasının geliştirilmesi için uygu-
lanmıştır. Bu çalışmada gösterilen yaklaşım araştırmacılara, istenilen hipotezi yerine getirmek için
CCC'yi uygulama ve belirli veriler için en uygun modeli bulma olanağı sağlar.

AAnnaahh  ttaarr  KKee  llii  mmee  lleerr:: Bayes faktörü; MCMC; tekrarlı ölçüm verisi; CCC; BT-MRG; tümör büyüklüğü
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vanced tool before it is being adopted for regular
service. The concordance correlation coefficient
(CCC) is useful to detect the performance of latest
tool measured through continuous random vari-
able.1 However, t-test, Pearson correlation coeffi-
cient, coefficient of variation, intra-class
correlation and least square analysis are very useful
in this scenario and already widely adopted.2 It is to
be noted that the Intra-class correlation coefficient
and coefficient of variation generally are consid-
ered, assuming that the readings between two ob-
servers are interchangeable. The t-test, least
squares analysis usually fail to reject the null hy-
pothesis in  case of very large or small residual er-
rors. The Pearson correlation is not able to measure
the accuracy.3 The CCC is found to be useful to
measure the difference between the observations
made. It evaluates the agreement between two
readings through capturing the variation from 450
lines of the origin. Precision (by degree of varia-
tion) and accuracy (degree of location or scale-
shift) are already being considered into CCC.4

The literature and available methods for dis-
crete outcome to measure the performance of new
diagnostic tool in comparison to existing is quite
developed. The kappa statistics and weighted
kappa5 are widely used indices for measuring the
agreement between two rater/ tool through dis-
crete outcomes. The intra-class correlation to
measure the reproducibility is found suitable.6,7 The
within-subject coefficient of variation to capture
the reproducibility through random-effect model-
ing is also illustrated.8 The Intra-class correlation
coefficient obtained from ordinal data is equivalent
to weighted kappa for integer scoring.6,9-11 The ap-
plication of CCC for repeated measured data were
attempted through intra-class correlation coeffi-
cient.12 The confidence interval of CCC (ρccc)
through Z-transformation Zccc is very complex to
apply.1,13 It is to be noted that the computation of
Z-transformation is cumbersome. It has also been
established that CCC tends to Pearson correlation
coefficient in case of both rater having equal mean
and variance of the measurement of interest.1 The
variance component to estimate CCC has also been
illustrated.14 It is defined that CCC is covariance-

based index. The estimation procedure of this co-
variance -index is driven by the covariance ad-
justed method, particularly covariance related to
subject effect. Separately, the stratified CCC15 and
the covariate adjustment in CCC through General-
ized Estimating Equation has also been explored.16

Pre and post treatment tumor size is one of the
important prognostic tool and indicator of thera-
peutic success or failure. Recently, several types of
advanced imaging modalities are available for
tumor size detection like magnetic resonance im-
aging (MRI) and computed tomography (CT). Ide-
ally the same imaging modality should be applied
to detect the tumor size before and after therapy to
reduce the variation in different imaging. Simulta-
neously, same method of interpretation about
tumor size needs to be performed. Broadly, two
types of approaches are available for detection of
tumor size, either through tumor volume or by
maximum area covered by the tumor i.e tumor size.
It is quite natural that maximum area covered by a
tumor will be having maximum tumor volume;
however it may not be true always. There is always
a dilemma in health service providers whether to
give priority to tumor volume or tumor size for as-
sessment of T (tumor) stage of cancer patients. This
paper illustrates the application of concordance
correlation between tumor volume and maximum
size covered by tumor imaged by different diag-
nostic tools. Moreover, the extension of the
Bayesian approach of concordance correlation is
considered to compute the CCC.  Particularly, this
paper proposes the Bayesian counterpart to com-
pute CCC for repeatedly measured continuous data.

MATERIAL AND METHOD

This study considered the tumor size data of astro-
cytoma brain patients treated in the Department of
Radiation Oncology at  Malabar Cancer Centre be-
tween 2012 to 2014. Retrospective analyses of 33
patients were performed in this study. The data set
is a tumor volume and tumor size measurements of
those 33 individuals. The tumor volume and tumor
size are measured separately by MRI and CT scan
during baseline and post surgery visits of the pa-
tients. 



The response vector is defined as Yi(i = 1,2,N,i
≤ I) for I x 1 vector that contains the I readings. The
term i=1 for CT & i=2 for MRI scanner are fixed for
all Individuals i.e. N=33. The same individual’s sep-
arate reading measured through different scanner
are denoted as Yi and Yi respectively. The expected
squared difference E[(Yi − Yi´)2] is used to define
the CCC as scaled between -1 to 1. The classical
definition of CCC is recalled as
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are assumed as unbiased estimates
of respectively are detailed
below.  

The expectation of these estimates is observed
for k types of different methods/tools and here it is
limited with k=2 for two scanners as 
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and corresponding unbiased estimator is defined as
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Finally, unbiased estimate of     is defined
as   

(6)

MEASUREMENT THROUGH CCC

Let i and i’ are two different reading for the jth pa-
tients and k=2 as representative of the number of
methods/tools i.e. CT scanner and MRI scanner.
The response of interest is Yij and Yi´j of the same
patients ´j´. The simple linear model for two scan-
ners is defined as

(7)

Here, Yii´j is a continuous response measured
of the jth individual, ith observation by kth method,
θ is the overall mean value of tumor size, Y is con-
sidered as fixed effect. The terms Yi and Yi´ are
considered as random effects. It is assumed that the
error term εii´j~N(0,τ). The term εii´j is stands for
precision for jth individual. In this work the prior
assumption about the regression parameters of
fixed effect is assumed to follow N(0.0.0001)  and
random effects as Gamma(0.0.0001).

The variance of fixed effect, random effect and
error terms in equation (7) is defined as 

(8)

(9)

and

(10)

The CCC is defined as 

(11)

The term θ is constant.

To formulate the Bayesian analysis, we assign
prior on the parameters, τf, τr, τe as follows:

θ ~ dnorm (0,0.001)

τf ~ dgamma (0.0001,0.0001)

τr ~ dnorm (0.0001,0.0001) and

τe ~ dgamma (0.0001,0.0001)
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where dnorm stands for normal distribution,
dgamma denotes the Gamma distribution. The pa-
rameters of the distribution considered as non-in-
formative prior and fixed as 0 and 0.001 for normal
distribution and 0.0001 and 0.0001 for Gamma dis-
tribution.  

The Bayesian factor is applied through JZS for
Concordance Correlation in regression line.17 The
regression coefficient β is permitted to the applica-
tion of JZS prior. The CCC, Intercept (θ), regres-
sion coefficients and error term (εii´j) are detailed
in equation (7). Let the equation (7) further been
separated into Model (M1)  and Model (M0)  by 

(12)

(13)

The model (M1) states the presence of CCC
and absence of it by Model (M0). Now, the Bayes
Factor through JZS is defined as,17-19

(14)

(15)

If the value of BF10 becomes more than 1, it
states about the presences of CCC otherwise not. 

The statistical test can be performed with two
Hypotheses: the Null Hypothesis, $H_{0}$ as given
in model (M0) and the alternative Hypothesis H1 or
(M1). The prior probability of Null Hypothesis is as-
signed as p(M0) and Alternative as p(M1). Therefore,
Baye’s theorem is applied to the observed data to
compute the posterior probability of the Hypothe-
sis. The appearance of the posterior probability of
Alternative Hypothesis is computed as

(16)

The term P(M1│Y) is the marginal likelihood
of the data for alternative hypotheses. Further, the
marginal likelihood is calculated as

(17)
Bayes Factor is used to compute the appear-

ance of P(M1|Y) in comparison to P(M0|Y):20

(18)

RESULTS

The relations between Pre Surgery and Post Sur-
gery Tumor Volume in Male and Female patients
are graphically explored in Figure1 and Figure2 re-
spectively. The relation of Tumor size explored
through spaghetti plots for male and female given
in Figure 3 and Figure 4 separately. Figure 5 and
Figure 6 provide the scatter plots on pre-surgery
(Tumor size and Tumor volume) and post-surgery
(Tumor size and Tumor volume).

The descriptive statistics of the patient’s tumor
size on pre and post surgery are given in Table 1.
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FIGURE 1: Pre surgery and post surgery tumor volume in male.

FIGURE 2: Pre surgery and post surgery tumor volume in female.



The classical test is performed to test the level
of CCC in tumor data. Table 2 and Table 3 reveal
the estimates of CCC through covariates adjusted
model on tumor volume and tumor size respec-
tively. The test is performed to check whether the
null hypothesis that the concordance correlation
coefficient is zero, i.e. ρccc = 0. The cccUst function
in “cccrm” package of R i386 3.1.1 is applied and
test the null hypothesis to perform the classical test. 

The Bayesian counterparts of estimates
through posterior estimates on tumor volume and
size separately provided in Table 4 and Table 5 re-
spectively.

In Bayesian the same models are selected to fit
the correlation coefficient to measure the associa-
tions. It implies that the precision about the meth-
ods are moderate.  The correlation coefficients are
not very much different from calculated classical
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FIGURE 3: Pre surgery and post surgery tumor size in male. FIGURE 4: Pre surgery and post surgery tumor size in female.

FIGURE 5: Relation between tumor size and tumor volume in pre surgery. FIGURE 6: Relation between tumor size and tumor volume in post surgery.

TABLE 1: Descriptive Statistics about tumor size of the patients.



CCC detailed in Table 3. It can be concluded by
having high estimates for accuracy. 

Table 2 shows the CCC between two scanners
on tumor volume are 0.89 (0.00) and 0.84 (0.01) for
male and female patients respectively.  Table 3 re-
veals the CCC estimates between CT and MRI on
tumor size for male and female patients as
0.85(0.01) and 0.87(0.01) respectively. The esti-
mates of CCC for male and females are found very
close. The Bayesian counterpart of CCC’s for tumor
size and volume are computed separately for all pa-
tients. The male and females are not selected sepa-
rately to compute the Bayesian counterpart of CCC.
The posterior estimate of CCC is found to be 0.96
with 95% credible interval (0.87,0.99) on tumor
volume (Table 4). Table 5 shows that posterior es-

timates of CCC on tumor size observed with 0.98
with 95% credible interval (0.95,0.99) . The vari-
ance components are obtained and detailed in
Table4 and Table 5. In summary, the proposed
computation method for estimating CCC tends to
estimate the true CCC with less or equal standard
error. The values are applied to obtain the BF10 in
equation (18). The BF10 is calculated with 10.28. It
is the evidence in favor of M1 in comparison to
model M0. 

DISCUSSION AND CONCLUSION

The CCC is now a useful tool for measuring agree-
ment among observers on continuous variables. It
is more attractive due to computational provisions
through a result of the sample covariance, variances,
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TABLE 2: Estimates of concordance correlation coefficients on tumor volume.

TABLE 3: Estimates of concordance correlation coefficients on tumor size.

TABLE 4: Posterior estimates of CCC on tumor volume for all patients.



and means of observers to the CCC.1,21 However,
there is a certain chance of getting biased estimates
either on the CCC or its standard error.22 The CCC
into the generalized estimating equation through
three different procedures has been extended.16 The
application of overall CCC and stratified CCC also
been explored in detail recently.15 The Generalized
Concordance Correlation Coefficient through vari-
ance component method is found very simple.23 The
robust approximation to deal with CCC  has also
been elaborated.15 The application of CCC has been
found suitable in case of time to event problem by,24

univariate censoring,2 and longitudinal repeated
measurements.22,25 It is found suitable to estimate
CCC through qualitative or quantitative data
through variance components linear mixed model.
Here, the generalized CCC (GCCC) has been de-
fined through variance component approach into
continuous data. The Bayesian inference is adopted
for development of the computational algorithm.
The idea of this approach is to fit the data into
GLMM and thereafter extend the application
through Bayesian. The approach illustrated in this
work gives the researchers with the scope to find
the most appropriate model for specific data and
apply CCC to fulfill the desired hypothesis. It gives
more information about statistical inference rather
than mere p-values observed from classical ap-
proach. In addition to estimates about CCC, it also
provides the  estimates of variance components of
CCC. The Bayesian estimation procedure is applied
on ICC.26 They adopted the beta-binomial model for
ICC interpretation. They reported the conclusion

through the credible interval. A Bayesian Estima-
tor for calculation of CCC is applied in this study.  It
is found that the ICC values are generally not ac-
companied by confidence interval, which makes
the impact of ICC limited  towards estimation pro-
cedure.27 In this work the model is formulated with
MCMC. A total of 10,000 iterations are selected to
generate the posterior estimates for parameters. The
OpenBugs software is used to run the algorithm. It
is clear that the techniques applied over here are
quite simple and suitable to apply in continuous
data with concordance problem. This paper has at-
tempted to explore the Bayesian counterpart to
compute CCC. It is aimed to explore the application
of Bayesian approach to compute CCC. The appli-
cation has been illustrated with tumor volume and
tumor size measurements of astrocytoma brain pa-
tients measured through different types of imag-
ings. It can be concluded that tumor size and tumor
volume are highly concordant. The measurement
of any one can be replicated in presences of others.
Bayesian can be useful to get prominent evidence
for test statistics in relation between variables.
Bayes factor is useful for computation of CCC. It is
useful to figure out the strength of the hypothesis.
It can be considered as an easily interpretable tool to
discover the relations.
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TABLE 5: Posterior estimates of CCC on tumor size for all patients.
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