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Evaluating the Performances of ROC Curve Estimation  

Methods for Different Distributions and  

Different Kernel Functions 

Farklı Dağılımlar ve Farklı Çekirdek Fonksiyonları için  

ROC Eğrisi Tahmin Yöntemlerinin Performanslarının İncelenmesi 

    Deniz SIĞIRLI
a
 

aDepartment of Biostatistics, Bursa Uludağ University Faculty of Medicine, Bursa, TURKEY  

ABSTRACT Objective: Receiver operating characteristic (ROC) 

curve is a statistical method used to examine the actual effective-
ness of a diagnostic test or a biomarker in a comprehensive and 

reliable way. Several methods have been proposed to estimate ROC 

curve properly. The aim of the present study is to compare recent 
ROC curve estimation methods for different distribution and sam-

ple sizes. Material and Methods: Log-concave density and 

smooth log-concave density estimate based ROC curve estimation, 
kernel based ROC curve estimation with Gaussian, Epanechnikov, 

rectangular, triangular kernels, and binormal ROC estimation 

methods were compared for different simulation scenarios. Re-

sults:  The ROC curve estimation methods based on kernel esti-

mates gave their best performances when the biomarker values of 

non-diseased group are normal but the biomarker values of the dis-
eased group are right-skewed, with a notable difference from other 

methods. Epanechnikov and rectangular kernel methods yielded 

better performance than other kernel methods in small sample sizes; 
but this difference disappeared as the sample size increased. The 

methods based on kernel or log-concave density estimate gave their 

worst results for the simulation scenario where the data were non-
normal but symmetric. Conclusion: The performances of the other 

methods examined in the study exceeded the performance of the 

binormal method in highly skewed data in both groups and when 
the distribution of diseased and non-diseased populations were 

right-skewed and normal, respectively. 
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                    kernel density estimation;  

                    log-concave density estimation  

ÖZET Amaç: Alıcı işletim karakteristiği [receiver operating 

characteristic (ROC)] eğrisi, bir tanı testinin veya bir biyobelirtecin 
gerçek etkinliğini kapsamlı ve güvenilir bir şekilde incelemek için 

kullanılan istatistiksel bir yöntemdir. ROC eğrisini doğru bir şekil-

de tahmin etmek için çeşitli yöntemler önerilmiştir. Bu çalışmanın 
amacı, farklı dağılım ve örneklem büyüklükleri için güncel ROC 

eğrisi tahmin yöntemlerini karşılaştırmaktır. Gereç ve Yöntem-

ler: Log-konkav yoğunluk ve düzgün log-konkav yoğunluk tahmini 
tabanlı ROC eğrisi tahmin yöntemi, Gaussian, Epanechnikov, dik-

dörtgen, üçgen kernel fonksiyonu kullanan kernel tabanlı ROC eğ-

risi tahmin yöntemleri ve binormal ROC eğrisi tahmin yöntemleri 
farklı simülasyon senaryoları kullanılarak karşılaştırılmıştır. Bulgu-

lar: Kernel tahmincilerine dayanan ROC eğrisi tahmin yöntemleri, 

sağlıklı grubun biyobelirteç değerlerinin normal dağılım, hasta gru-
bun biyobelirteç değerlerinin sağa çarpık dağılım gösterdiği du-

rumda, diğer yöntemlerden büyük farkla en iyi performansı göster-

miştir. Epanechnikov vedikdörtgen kernel yöntemleri, diğer kernel 
yöntemlerinden küçük örneklemlerde daha iyi performans göster-

mekle birlikte aralarındaki fark, örneklem büyüklüğündeki artışla 

ortadan kalkmıştır. Kernel ve log-konkav yoğunluk tahminine daya-
lı yöntemler, verinin normal olmadığı fakat simetrik olduğu durum-

da en kötü sonucu vermişlerdir. Sonuç: Çalışmada incelenen yön-

temlerin performansları, her iki grupta yüksek oranda çarpık veriler 
olması durumunda ve hasta ve sağlıklı popülasyonların dağılımları 

sırasıyla sağa çarpık dağılım ve normal dağılım olduğunda, 

binormal yöntemin performansını geçmiştir. 
 

Anahtar kelimeler: Tanı testi; alıcı işlem karakteristik eğrisi;  

                                  kernel yoğunluk tahmini;  

                                  log-konkav yoğunluk tahmini  
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In clinical decision making, it is important to distinguish patients and healthy individuals as accu-

rately as possible, with diagnostic tests, which are evaluation methods based on laboratory techniques, 

clinical observations or original equipment measurements, used to identify a disease. Receiver operating 

characteristic (ROC) curve is a statistical method used to examine the actual effectiveness of a diagnostic 

test or a biomarker in a comprehensive and reliable way.
1-3

 For the continuous diagnostic test results, sen-

sitivity and specificity are being computed for all possible cut-off values which discriminate the subjects 

as diseased and non-diseased. The ROC curve shows the arrangement between sensitivity and the 1-

specificity.
4
 

Let             and             denote the test results of   subjects belonging to random sample 

from diseased population and   subjects belonging to random sample from non-diseased population; 

      and       denote the cumulative distribution functions of the two independent random variables   

and   from the diseased and non-diseased populations respectively. For a given cut-off point c, the test 

result is positive if it is greater than c. So, the theoretical ROC curve can be defined as a plot of [1 - GY (c), 

1 - FX (c)]. Let   be a possible false positive rate (FPR) corresponding to a cut-off point for positivity,  

                                                                      .                                               (1) 

Then one can write, 

                                                                                                          (2) 

and 

                                                                   
                                                                              (3) 

Hence, sensitivity [true positive rate (TPR)] can be given as                   . So, ROC 

curve can be given as in equation-4.   

                                                                 
       .                                                            (4) 

Also assume that all observations in the diseased and non-diseased samples are mutually independent 

and empirical distribution function related to diseased sample and quantile function related to non-diseased 

sample are defines as        and    
  
   , respectively. When there is no knowledge about the underlying 

distributions of both samples and so       and       have completely unknown structures functions, plug-

ging the empirical counterparts into the equation-1, yields a non-parametric ROC curve estimation method, 

namely empirical ROC curve estimation.
5,6

 Although it is robust and represents data accurately, especially 

for small sample sizes it has a problem of variability and as it is a step function there can be different Food 

Programs Reporting Systems for a TPR value, and vice versa. Besides, the estimated ROC curve being in a 

jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve.
7,8

 Another 

approach is the parametric ROC curve estimation which assumes that the       and       have a known 

structure and which computes the ROC curve based on the estimates of these distribution functions. The 

most prevalent choice for these functions is the cumulative distribution function of a standard normal distri-

bution, which gives the binormal ROC curve as given in equation-5, where              and   

     .
4
 In equation-5, α and β are estimated by using sample estimates of population means and standard 

deviations of diseased and healthy populations. 
 

                                                                                        (5) 

 

But parametric ROC curves have some distributional assumptions. Several methods have been explored 

to estimate a ROC curve more precisely. These include using kernel estimates of       and       in equa-

tion-4.
9-11

 Let      and       be the probability density functions of random variables   and   from the dis-
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eased and non-diseased populations, and       and       are their kernel estimates, respectively. One can 

write, 

                   
 

   
    

    

  
  

                                                                                                                     (6) 

and 

           
 

   
    

    

  
  

                                                                                                                    (7) 

 

where hd and hn are the bandwidths,    and    are the kernel functions for diseased and non-diseased popu-

lations. Zou et al. suggested estimating the points on the ROC curve by using the integral of kernel esti-

mates.
9
 By taking the integrals of       and       to the right of threshold one can get       and      . Plug-

ging these estimates in equation-4, new ROC curve estimation has been obtained. 
 

Rufibach
 
has proposed to use log-concave density estimates and also kernel smoothed version of the 

log-concave probability density function, instead of kernel function, which can be used for asymmetric and 

unimodal densities.
12

 The density function      is called log-concave if it is in the form               

for some concave function           . For a sample of independent and identically distributed random 

variables         from     , the density estimate was calculated by maximizing the log-likelihood func-

tion 
 

                     
 
                                                                                                                        (8) 

 

over all functions   that are concave and produce a probability density.
13

 Rufibach defined smooth ROC 

curve estimator by computing log-concave distribution function estimates of       and       both for dis-

eased and non-diseased samples, and then plugging these estimates in equation-4.
12

 

In the present paper, we aimed to compare the performances of different ROC curve estimation meth-

ods; including estimators derived from kernel estimators including different kernel functions, estimators de-

rived from log-concave density estimates and fully parametric binormal method, for the diagnostic test re-

sults coming from different distributions with different sample sizes. Also to investigate the impact of differ-

ent kernel functions on the performance of a ROC curve estimation, we compared four different kernel func-

tions. 

    MATERIAL AND METHODS  

We performed a simulation study to compare the performances of different methods for different scenarios 

given in Table 1. Scenario-1 serves as a benchmark for comparing other estimators to the binormal model, 

which both the biomarker values of both non-diseased and diseased populations are symmetric and normal. 

It has been customary to assume that the biomarker values for the non-diseased population may be normal 

but diseased population to be non-normal and right-skewed in diagnostic studies. Scenario-2 is used to simu-

late data for this situation, where the biomarker values of non-diseased group is normal, but the diseased 

group is non-normal and skewed. Scenario-3 is used to evaluate the performance of ROC curve estimators, 

in situation both distributions are right-skewed, where data generated from gamma distribution. Scenario-4 is 

used in situation both distributions are highly right-skewed where data generated from exponential distribu-

tion. Scenario-5 is used to for symmetric but non-normal distributions, where data generated from lognormal 

distribution. Scenarios have been selected similar with the related studies in the literature, to allow the results 

to be analogous.
12,14,15 
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TABLE 1: Scenarios used in the simulation study. 
 

Scenario Diseased Non-diseased n-m 

1               
20-20 

50-50 

100-100 

200-200 

2                   

3                         

4                                           

5                               

 

 

We compared seven methods which are fully parametric binormal method, log-concave and smooth log-

concave methods proposed by Rufibach, and four ROC curve estimation method based on kernel estimation 

proposed by Zou.
9,12

 In fully parametric binormal model, we estimated   and   in equation-5 directly from 

the mean and variance of the underlying distributions. For kernel based ROC curve estimators, we used four 

different kernel functions; namely Gaussian, Epanechnikov, rectangular and triangular kernel. The method of 

Sheather and Jones was used for bandwidth selection.
16

 As all the kernels are symmetrical, first of all we 

normalized the data with quantile normalization as suggested by Robin et al.
17

 To ensure standardization, we 

performed normalization for all methods. 

We computed         values for     grid points,              .. We compared the results using av-

erage square error (ASE), a generally used index for evaluating performance of an ROC curve estimator 

       , for the true ROC curve        . ASE has been defined as in equation-9.
12,14,15

 

 

                                      
                   

 
     
   

     
                                                                               (9) 

 

In the simulation study, we took      =500 and the number of repetition was taken as r=1000. R 4.0.4 

software used for the simulations. pROC package was used for the ROC curve estimation methods except 

the binormal method. 

    RESULTS  

The mean, standard deviation and standard error of the ASE values for each simulation scenarios described 

in Table 1 are given. The results are presented in Table 2 for Scenario-1, Table 3 for Scenario-2, Table 4 for 

Scenario-3, Table 5 for Scenario-4 and Table 6 for Scenario-5. 
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TABLE 2: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased 

population are          and from the non-diseased population are         . 
 

 Method n=20 n=50 n=100 n=200 

Full parametric binormal 

Mean 0.00850 0.00345 0.00168 0.00081 

SD 0.01024 0.00440 0.00209 0.00108 

SEM 0.00032 0.00014 0.00007 0.00003 

Based on kernel estimate- 

Gaussian kernel 

Mean 0.08194 0.08003 0.07851 0.07867 

SD 0.02628 0.02020 0.01846 0.01654 

SEM 0.00083 0.00064 0.00058 0.00052 

Based on kernel estimate- 

Epanechnikov kernel 

Mean 0.08189 0.08002 0.07850 0.07867 

SD 0.02619 0.02016 0.01845 0.01653 

SEM 0.00083 0.00064 0.00058 0.00052 

Based on kernel estimate- 

Rectangular kernel 

Mean 0.08188 0.08001 0.07850 0.07867 

SD 0.02616 0.02015 0.01844 0.01652 

SEM 0.00083 0.00064 0.00058 0.00052 

Based on kernel estimate- 

Triangular kernel 

Mean 0.08191 0.08002 0.07850 0.07867 

SD 0.02622 0.02017 0.01845 0.01653 

SEM 0.00083 0.00064 0.00058 0.00052 

Based on log-concave density estimate 

Mean 0.08772 0.08360 0.08229 0.08024 

SD 0.04896 0.03068 0.02178 0.01438 

SEM 0.00155 0.00097 0.00069 0.00045 

Based on smooth log-concave  
density estimate 

Mean 0.08596 0.08284 0.08188 0.08003 

SD 0.04743 0.03013 0.02154 0.01429 

SEM 0.00150 0.00095 0.00068 0.00045 

 

SD: Standard deviation; SEM: standard error of mean. 
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TABLE 3: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased 

population are              and from the non-diseased population are and         . 
 

 Method n=20 n=50 n=100 n=200 

Full parametric binormal 

Mean 0.01420 0.00807 0.00642 0.00542 

SD 0.01469 0.00739 0.00521 0.00349 

SEM 0.00046 0.00023 0.00016 0.00011 

Based on kernel estimate- 

Gaussian kernel 

Mean 0.00989 0.00939 0.00884 0.00844 

SD 0.00694 0.00555 0.00475 0.00434 

SEM 0.00022 0.00018 0.00015 0.00014 

Based on kernel estimate- 

Epanechnikov kernel 

Mean 0.00984 0.00937 0.00883 0.00844 

SD 0.00692 0.00554 0.00474 0.00434 

SEM 0.00022 0.00018 0.00015 0.00014 

Based on kernel estimate- 

Rectangular kernel 

Mean 0.00983 0.00937 0.00883 0.00844 

SD 0.00692 0.00554 0.00474 0.00434 

SEM 0.00022 0.00018 0.00015 0.00014 

Based on kernel estimate- 

Triangular kernel 

Mean 0.00985 0.00938 0.00883 0.00844 

SD 0.00693 0.00554 0.00474 0.00434 

SEM 0.00022 0.00018 0.00015 0.00014 

Based on log-concave density estimate 

Mean 0.01858 0.01153 0.00969 0.00824 

SD 0.01731 0.00950 0.00661 0.00427 

SEM 0.00055 0.00030 0.00021 0.00014 

Based on smooth log-concave  
density estimate 

Mean 0.01708 0.01095 0.00938 0.00808 

SD 0.01641 0.00923 0.00649 0.00422 

SEM 0.00052 0.00029 0.00021 0.00013 

 

SD: Standard deviation; SEM: Standard error of mean. 
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TABLE 4: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased 

population are                and from the non-diseased population are and             . 
 

 Method n=20 n=50 n=100 n=200 

Full parametric binormal 

Mean 0.01555 0.00738 0.00484 0.00328 

SD 0.01736 0.00725 0.00425 0.00230 

SEM 0.00055 0.00023 0.00013 0.00007 

Based on kernel estimate- 

Gaussian kernel 

Mean 0.03495 0.03337 0.03337 0.03223 

SD 0.01662 0.01214 0.01214 0.01113 

SEM 0.00053 0.00038 0.00038 0.00035 

Based on kernel estimate- 

Epanechnikov kernel 

Mean 0.03490 0.03276 0.03335 0.03222 

SD 0.01661 0.01349 0.01214 0.01113 

SEM 0.00053 0.00043 0.00038 0.00035 

Based on kernel estimate- 

Rectangular kernel 

Mean 0.03489 0.03276 0.03335 0.03222 

SD 0.01657 0.01347 0.01213 0.01112 

SEM 0.00052 0.00043 0.00038 0.00035 

Based on kernel estimate- 

Triangular kernel 

Mean 0.03492 0.03277 0.03336 0.03222 

SD 0.01659 0.01349 0.01213 0.01113 

SEM 0.00052 0.00043 0.00038 0.00035 

Based on log-concave density estimate 

Mean 0.04599 0.03760 0.03474 0.03382 

SD 0.03557 0.02227 0.01577 0.01110 

SEM 0.00112 0.00070 0.00050 0.00035 

Based on smooth log-concave  
density estimate 

Mean 0.04528 0.03746 0.03471 0.03382 

SD 0.03430 0.02185 0.01559 0.01102 

SEM 0.00108 0.00069 0.00049 0.00035 

 

SD: Standard deviation; SEM: Standard error of mean. 
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TABLE 5: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased 

population are                        and from the non-diseased population are and                       . 
 

 Method n=20 n=50 n=100 n=200 

Full parametric binormal 

Mean 0.05467 0.04227 0.03660 0.03252 

SD 0.02878 0.01794 0.01151 0.00807 

SEM 0.00091 0.00057 0.00036 0.00026 

Based on kernel estimate- 

Gaussian kernel 

Mean 0.02747 0.02688 0.02614 0.02594 

SD 0.01408 0.01190 0.00987 0.00926 

SEM 0.00045 0.00038 0.00031 0.00029 

Based on kernel estimate- 

Epanechnikov kernel 

Mean 0.02743 0.02686 0.02613 0.02594 

SD 0.01404 0.01188 0.00986 0.00926 

SEM 0.00044 0.00038 0.00031 0.00029 

Based on kernel estimate- 

Rectangular kernel 

Mean 0.02742 0.02686 0.02613 0.02594 

SD 0.01402 0.01188 0.00986 0.00926 

SEM 0.00044 0.00038 0.00031 0.00029 

Based on kernel estimate- 

Triangular kernel 

Mean 0.02744 0.02687 0.02613 0.02594 

SD 0.01405 0.01189 0.00987 0.00926 

SEM 0.00044 0.00038 0.00031 0.00029 

Based on log-concave density estimate 

Mean 0.03612 0.03073 0.02901 0.02788 

SD 0.03014 0.01965 0.01340 0.00908 

SEM 0.00095 0.00062 0.00042 0.00029 

Based on smooth log-concave  
density estimate 

Mean 0.03467 0.03013 0.02870 0.02771 

SD 0.02910 0.01930 0.01327 0.00903 

SEM 0.00092 0.00061 0.00042 0.00029 

 

SD: Standard deviation; SEM: Standard error of mean. 
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TABLE 6: Average square error values for the ROC curve estimation of different methods for the biomarker values from the diseased 

population are                  and from the non-diseased population are and                 . 
 

 Method n=20 n=50 n=100 n=200 

Full parametric binormal 

Mean 0.00964 0.00452 0.00255 0.00150 

SD 0.01119 0.00526 0.00281 0.00005 

SEM 0.00035 0.00017 0.00009 0.00092 

Based on kernel estimate- 

Gaussian kernel 

Mean 0.10381 0.10501 0.10467 0.10493 

SD 0.02735 0.02341 0.02037 0.01858 

SEM 0.00086 0.00074 0.00064 0.00059 

Based on kernel estimate- 

Epanechnikov kernel 

Mean 0.10377 0.10500 0.10467 0.10493 

SD 0.02727 0.02337 0.02035 0.01857 

SEM 0.00086 0.00074 0.00064 0.00059 

Based on kernel estimate- 

Rectangular kernel 

Mean 0.10377 0.10499 0.10467 0.10493 

SD 0.02723 0.02335 0.02034 0.01857 

SEM 0.00086 0.00074 0.00064 0.00059 

Based on kernel estimate- 

Triangular kernel 

Mean 0.10378 0.10500 0.10467 0.10493 

SD 0.02730 0.02338 0.02035 0.01858 

SEM 0.00086 0.00074 0.00064 0.00059 

Based on log-concave density estimate 

Mean 0.11623 0.11092 0.10792 0.10728 

SD 0.05288 0.03404 0.02335 0.01730 

SEM 0.00167 0.00108 0.00074 0.00055 

Based on smooth log-concave  
density estimate 

Mean 0.11395 0.10992 0.107915 0.10699 

SD 0.05109 0.03342 0.02334655 0.01720 

SEM 0.00162 0.00106 0.000738283 0.00054 

 

SD: Standard deviation; SEM: Standard error of mean. 

 

 

    DISCUSSION 

Statistical modeling of ROC curves is a vast topic and offers several future research lines. In the present 

study, we compared the performances of recently proposed several ROC curve estimation methods, using 

different techniques to smooth the ROC curve, in different simulation scenarios.  

As expected, the ROC estimators from fully parametric binormal model yielded the best performance 

when the data follow normal distribution in both groups. It is observed that the kernel based estimates were 

better than the log-concave density based estimates when the data follow normal distribution in both groups. 

In kernel based ROC curve estimation methods, although the difference was not notable, Epanechnikov and 

rectangular kernel gave the best performances for Scenario-1. The ROC curve estimation method based on 

the smooth log-concave density estimate was better than the log-concave density estimate when the data fol-

low normal distribution in both groups.  
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When the distribution of the biomarker values of non-diseased group is normal, but the diseased groups 

is non-normal and skewed (Scenario-2), the performance of the full parametric binormal ROC curve estima-

tion decreased dramatically. However, the ASE values were still smaller that the that of the ROC curve esti-

mation methods based on the log-concave density estimate and smooth log-concave density estimate. Again, 

smooth version of the log-concave density estimate yielded better results than the log-concave density esti-

mate. On the other hand, methods based on kernel estimates gave best results compared to other methods. 

The performances of kernel based methods for this scenario were similar to the results of full parametric bi-

normal method in case of Scenario-1. Especially in small samples, Epanechnikov and rectangular kernel 

methods yielded better performance than other kernel methods; but it has been seen that this difference dis-

appeared as the sample size increased. 

When the distributions of both diseased and non-diseased population are moderately right-skewed, 

(both generated from gamma distribution, i.e. Scenario-3), it was not surprising that the full parametric bi-

normal model gave slightly better results than the other methods, since the skewness of the data was not very 

high level. On the other hand, for small sample size, full parametric binormal model performed worse than it 

did in Scenario-2, where diseased population is right-skewed and the non-diseased population follow normal 

distribution. But it gave better performance than that it did in Scenario-2 for moderate and large sample 

sizes. The ROC estimation methods based on kernel estimation gave slightly worse performances than the 

full parametric binormal method for Scenario-3. Estimates based on log-concave and smooth log-concave 

density estimates yielded the worse results. Kernel and log-concave density estimate based ROC estimation 

methods could not outperform the binormal method although the biomarker distributions were right-skewed 

in diseased and non-diseased populations. 

For the situation where both distributions are highly right-skewed and data generated from exponential 

distribution (Scenario-4), the ROC estimation methods based on kernel and log-concave density estimates, 

finally outperformed the performance of fully parametric binormal ROC method. The difference between the 

binormal ROC method and other methods decreased as the sample size increased. Kernel methods also 

yielded better performances that that of log-concave density based methods. Especially in small and moder-

ate samples, rectangular and Epanechnikov kernel methods yielded better performance than the other kernel 

methods; but this difference disappeared in big sample sizes. Again, smooth log-concave density estimate 

gave better results that the log-concave density estimate based method. 

For the Scenario-5 where data generated from lognormal distribution, the full parametric binormal ROC 

estimation method gave the best results according to the other methods. This can be the result of that the dis-

tribution of both groups were symmetric. The results for the full parametric binormal model in this situation 

was similar to its performance in Scenario-1. It was surprising that the ROC estimation methods based on 

kernel or log-concave density gave their worst results among all the scenarios. It is seen that the perform-

ances of the methods except the binormal model did not affected much from the increase in sample size. 

It was not surprising that all the methods gave better results as the sample size increased for all scenar-

ios. However, the impact of the sample size was more pronounced for the full parametric binormal method 

and the methods based on log-concave density and smooth log-concave density estimates. The impact of the 

sample size was smaller when the data of both were highly right-skewed. 

    CONCLUSION 

Full parametric binormal ROC curve estimation method gave its best performance in two situations, where 

the biomarker values of both diseased and non-diseased populations follow normal distribution and where 

the biomarker values of two populations follow lognormal distribution, differing greatly from the other 

methods. The results of the present study showed that the binormal method performed well in symmetric but 

non-normal distribution, too. The ROC curve estimation methods based on kernel estimates gave their best 

performances when the biomarker values of non-diseased group are normal but the biomarker values of the 
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diseased group are right-skewed, with a notable difference from other methods. The performances of the 

other methods examined in the study did not exceed the performance of the binormal method in moderately 

skewed data, but surpassed it in highly skewed data. 
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