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The Use of Nonparametric Quantile
Regression and Least Median of

Squares Regression for Construction of
Growth Curves of Weight

AABBSSTTRRAACCTT  OObbjjeeccttiivvee::  This study aimed to investigate the use of the Least Median Squares (LMS) re-
gression and nonparametric quantile regression model comparatively to describe children’s weight growth.
MMaatteerriiaall  aanndd  MMeetthhooddss::  Two different models were used to obtain the percentile curves to identify the
weight growth in girls. The first model was obtained by LMS regression, which is a member of the fam-
ily of nonlinear parametric quantile regression. In addition, in this model percentile curves used to define
growth were generated using the Box-Cox transformation and the cubic spline. The second model was ob-
tained by nonparametric quantile regression that did not require the assumption of a normal distribution
for construction of percentile curves. This method is a flexible approach, as well as being computationally
simple. The weight values obtained from 1771 healthy girls aged between 6 and 14 years were used in both
methods. The data were collected from the cross-sectional study conducted in schools in Düzce city. RRee--
ssuullttss:: The distributions of weight measurements according to ages revealed that there were deviations
from normality at some ages, there were deviated values in the tail regions of the distribution, and the vari-
ances changed according to ages. Using both methods, growth curves were constructed separately for each
age group. Predicted values of the LMS and the non-parametric quantile regression models were similar
for each age. In addition, the error sum of squares derived from non-parametric quantile regression was
lower than that derived from LMS regression for each percentile curve. Moreover, the estimations obtained
from both methods were highly correlated with the estimation values of the province İstanbul, which
was considered the reference. CCoonncclluussiioonn::  When the assumptions about the distribution and variances of
the data are violated and these assumptions cannot be achieved with the transformation, nonparametric
quantile regression method gives more reliable results for the creation of percentile curves.

KKeeyy  WWoorrddss::  Growth&development; growth charts 

ÖÖZZEETT  AAmmaaçç::  Bu çalışmada, çocuklardaki ağırlıkça büyümeyi tanımlamada, En Küçük Medyan Kareler (LMS)
regresyonu ve nonparametrik kantil regresyon modellerinin karşılaştırmalı olarak incelenmesi amaçlanmıştır.
GGeerreeçç  vvee  YYöönntteemmlleerr::  Çalışmada, kız çocuklarının ağırlıkça büyümesini tanımlamak için persentil eğrilerinin
elde edilmesinde iki farklı büyüme modeli kullanılmıştır. Bu yöntemlerden birisi olan LMS regresyonu, do-
ğrusal olmayan parametrik kantil regresyon ailesinden olup, Box-Cox transformasyonu ve kübik eğri yardım-
ıyla persentil eğrilerini oluşturur. İkinci yöntem, LMS yöntemine alternatif olabilecek ve dağılım ön şartı
gerektirmeyen nonparametrik kantil regresyondur. Bu yöntem, hesaplama kolaylıklarının yanı sıra esnek bir
yaklaşımdır. Her iki yöntemin uygulamasında, yaşları 6 ile 14 arasında değişen toplam 1771 sağlıklı kız ço-
cuğundan elde edilen ağırlık değerleri kullanılmıştır. Bu veriler, Düzce ilindeki okullarda yürütülen kesit-
sel bir çalışmaya aittir. BBuullgguullaarr::  Yaşlara göre ağırlık ölçümlerinin dağılımı incelendiğinde, bazı yaşlarda
normal dağılımdan sapmaların gözlendiği, dağılımın kuyruk bölgelerinde sapan değerlerin olduğu ve var-
yansların yaşlara göre değiştiği belirlenmiştir. Her iki yöntem yardımıyla, her bir yaş grubu için ayrı ayrı bü-
yüme eğrileri oluşturulmuştur. Bu eğrilerden elde edilen tahmini ağırlık değerleri birbirine benzer çıkmıştır.
Bunun yanı sıra oluşturulan her bir persentil eğrisi için parametrik olmayan kantil regresyon tahminlerinin
hatası, LMS yöntemine göre daha küçük bulunmuştur. Ayrıca her iki yöntem sonucunda elde edilen tah-
minlerin, referans olarak kabul edilen İstanbul ili tahmin değerleri ile hayli kuvvetli bir ilişki içinde olduğu
belirlenmiştir. SSoonnuuçç:: Verilerin dağılımı ve varyanslar ile ilgili varsayımların bozulduğu durumlarda ve trans-
formasyonla bu varsayımların sağlanamadığı koşullarda, nonparametrik kantil regresyon metodu, persentil
eğrilerinin oluşturulmasında daha güvenilir sonuçlar vermektedir.

AAnnaahhttaarr  KKeelliimmeelleerr:: Büyüme ve gelişme; büyüme gözlem kartları  
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rowth is expressed as a structural increase
and is defined as an increase of body vol-
ume and mass with the increase of number

and size of cells.1 Various growth models have been
used to describe the growth occurring in different
physical dimensions or organs of the human body
and to reveal whether the current growth is
healthy growth. Some of them focus on the mean
and the others are able to describe the entire con-
ditional distribution of the dependent variable (lo-
gistic nonlinear mixed model). Moreover, these
models are classified as linear and nonlinear mod-
els or parametric, semi-parametric, and non-para-
metric growth models.1,2

Quantile regression (QR) techniques are
widely used in preliminary medical diagnosis to
identify unusual subjects in the sense that the value
of some particular measurement lies in one or an-
other tail of the appropriate reference distribution.
QR can therefore help us to obtain a more complete
picture of the underlying relationship between out-
come such as weight and covariate such as age. QR
results are characteristically robust to outliers and
heavy-tailed distributions.3-5

Least Median Squares (LMS) method belongs
to the family of nonlinear semi-parametric quan-
tile regression and is a generalized form for the de-
termined quantiles of median regression. Recently
some alternative methods have been developed to
LMS, which have insufficient results, and one of
those is the nonparametric quantile regression
(NPQR) model.6,7

This study aimed to compare the use of LMS
regression model and nonparametric quantile re-
gression model to describe the weight growth of a
healthy child.

MATERIAL AND METHODS

LMS METHOD

The distribution of the outcome variable changes
according to age is shown by the reference centile
curves. The changing distribution of three curves
representing the median (M), coefficient of varia-
tion (S), and skewness (L or λ), which is expressed as

a Box-Cox power, are summarized by the LMS
method. Three curves (L, M, and S) can be fitted as
cubic splines with non-linear regression using pe-
nalized likelihood, and the amount of smoothing
needed can be given in terms of smoothing param-
eters or equivalent degrees of freedom. These pa-
rameters can be interpreted as the dimensionality of
the fitted function and are measured by computing
the trace of the pseudo-projection matrix defining
the estimator.6,8 In the selection of appropriate ef-
fective degrees of freedom (edf) value, the changes
in the Deviance and Akaike Information Criteria
(AIC) values are considered. The curves are created
by taking combinations of L, M, S where Deviance
or AIC values have the smallest number. The edf
values that give good results in many circumstances
for L, M, S parameters, are 3, 5, 3 respectively.

LMS method selects appropriate λ, applies
Box-Cox transformation according to this lambda
and transforms Y (t) ‘s measurements to standard-
ized Z (t) values to ensure normality. The trans-
formed observations are independent and normally
distributed with constant variance.9

After transformation, quantile curve for α Є
[0,1] is estimated by the following model.

Q (αIt)=µ(t)[1+λ(t)σ(t)φ−1(α)]1/λ(τ)

In this equation;
α : The lower tail area of the centile, 
zα : The normal equivalent deviate of size α.9,10  

A main assumption of the LMS method is that
the data are normally distributed. The main prob-
lem about the assumption may be the presence of
kurtosis, which could not be adjusted with trans-
formation. However, kurtosis tends to be less im-
portant than skewness as a contributor to non-
normality.6

When the assumptions of normality and the
constancy of the variance of outcome variable are
not valid, NPQR method is preferred instead of
LMS for construction of growth charts.11

Y(t)   λ(τ)−1
Z(t)= µ(t)

λ(τ)σ(t)
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NONPARAMETRIC QUANTILE REGRESSION 

Various non-parametric quantile regression NPQR
tools have been proposed in the literature.11-14 Non-
parametric spline-based quantile regression is a
flexible approach, as well as being computationally
simple, allowing a different grade of curvature for
each conditional quantile.13

Kernel, Local polynomials or smoothing splines
are used for smoothing the percentile curves pre-
dicted in NPQR method. We used series estimators,
which are constructed based on cubic B-splines.
These splines directly extend linear and low order
polynomial models. To generate B-splines, n, m,
and p values are needed. Here, p is the degree of B-
spline, n +1 is the number of control points, m is the
number of basic functions and m= n+p+1. In gen-
eral, the lower the degree, the closer a B-spline
curve follows its control polyline.2,15,16 The approx-
imation abilities of B-splines are well known from
the theoretical standpoint; spline models retain the
advantages of algebraic polynomials. Iterative steps
are used for smoothing and appropriate smoothing
coefficient is determined by error of model in each
iteration and proximity to each other of coefficients
estimated for each smoothing parameter. Smooth-
ing parameters are estimated by reweighted least
square method iteratively. 

In the NPQR method, the quantiles are esti-
mated as a linear combination of multiple basis
function.16

DATA

Weight is one of the most important indicators for
growth of children and adolescents. The distribu-
tion of weight and changes in variances of weights
are important issues for the selection of suitable
growth curve in each age group.16

The data were obtained from a cross-sectional
study carried out in Düzce city, located in the
northwest of Turkey with a heterogeneous socio-
cultural structure. Therefore weights were meas-
ured only once from each subject in each age
group. Schools were selected by stratified sampling
method according to income level. Weights were
measured twice in 770 girls from high-income
schools, 288 girls in middle income schools and 713

girls in low-income schools. The arithmetic mean
of the two measurements were recorded. Weights
were measured with precision digital scales (Felix
brand), which are sensitive to 0.1 kg. In summary,
the data set consisted of the body weight measure-
ments of 1771 healty Turkish girls aged between 6
and 14 years, in Düzce city between 2009 and 2010.
The study was approved by the ethical committee
of the university.

In this study, unconditional growth curves
were constructed for each age by using LMS and
NPQR. However, other covariates (other social-
demographic features) were not considered to build
these curves.

Fitting of the percentile curves was performed
using the LMS Chart Maker Ligth software pro-
gram (version 2.3; The Institute of Child Health,
London) and RR [is a public domain language for
data analysis sustained by the R Development Core
Team (2004)]. RR commands for LMS and NPQR
methods were given in the Appendix section.

RESULTS

DESCRIPTIVE VALUES

Mean, median, standard deviation (SD), minimum
,and maximum values were given in Table 1. The
proportional distribution of age groups were as fol-
lows: 6.21% of subjects were 6 years-old, 13.15%
were 7 years-old, 12.93% were 8 years-old, 12,87%
were 9 years-old, 11.85% were 10 years-old,
14.54% were 11 years-old, 13.21% were 12 years-
old, 11.57% were 13 years-old, and 3.71% were 14
years-old. Although the rate of 6 and 14 years-old
children was smaller than the rate of other age
groups, the sample sizes of those two age groups
was not too small. The standard deviation seemed
to increase with age (Table 1). 

Percentile values of this study were frequently
used to identify human growth percentile values
(Table 2). 

The distribution of weights according to ages,
revealed that the weight values of the girls who were
8, 9 and 11 years old   were close to the deviation
from normality. In contrast, the values in the other
age groups were distributed normally (Table 2).



Turkiye Klinikleri J Med Sci 2013;33(3) 695

Biostatistics Ankaralı et al.

Table 3 showed that skewness and kurtosis co-
efficients of weight values of the girls between 7
and 11 years-old showed more deviation than the
normal distribution values. These results were
compatible with the normality test in Table 2.
Moreover, the variances at different ages were het-
erogeneous, leading to the conclusion that vari-
ances are not stable (Figure 1).

On the other side, the raw percentile curves,
which were not transformed and not smoothed

according to age were given in Figure 2. The per-
centile values that were taken into consideration,
are important in health literature. Because of vi-
olations of the assumptions for parametric tests,
firstly Box-Cox transformation was applied to the
data. And then percentile curves were constructed
with the LMS method.

RESULTS OF LMS METHOD

Weight values deviated from normal distribution
at some ages and deviated values existed in tails of
distribution. In addition, the variances changed ac-
cording to age. Since these assumptions were dam-
aged, the LMS method that includes Box-Cox
transformation was used. The corrected percentile
curves, that were predicted according to ages after
the LMS method was applied, and the L, M, S esti-
mation curves were given in Figure 3.

Percentile values Normality test

Age 3 5 10 25 50 75 90 95 97 (P)

6 17,600 17,820 18,620 20,350 21,800 23,850 25,580 27,870 28,734 0,587

7 19,004 19,570 20,200 22,200 24,800 26,800 29,800 32,530 33,396 0,169

8 20,360 21,000 21,600 24,000 26,600 29,400 34,600 37,500 40,220 0,05

9 23,148 23,690 24,400 26,600 30,200 34,500 39,200 42,110 43,478 0,066

10 25,798 26,600 27,400 30,350 34,800 39,000 45,100 48,360 52,268 0,108

11 28,342 28,600 30,140 33,600 38,400 44,150 50,400 53,010 57,000 0,073

12 32,620 33,800 36,000 40,350 45,500 52,050 58,700 61,650 63,580 0,318

13 34,636 36,520 40,440 43,900 49,200 55,100 61,800 65,600 68,476 0,269

14 41,208 42,140 44,340 46,750 51,700 57,550 66,080 69,190 69,994 0,633

TABLE 2: Raw percentile values of weight.

Age N Mean Median SD Minimum Maximum

6 110 22,248 21,800 2,752 16,400 30,000

7 233 24,913 24,800 3,816 17,200 38,800

8 229 27,303 26,600 4,874 18,600 43,800

9 228 30,937 30,200 5,585 21,400 47,400

10 210 35,554 34,800 6,804 23,200 57,200

11 256 39,324 38,400 7,778 25,200 66,400

12 234 46,523 45,500 8,565 28,800 77,000

13 205 49,908 49,200 8,648 30,600 76,800

14 66 53,324 51,700 8,109 39,200 75,200

TABLE 1: Descriptive statistics of weights.

R commands for Parametric Quantile Regression Model (LMS)

> library (lmsqreg)

> centiles <- c(0.03,0.05,0.10,0.25,0.5,0.75,0.9,0.95,0.97)

> lms.fit <- lmsqreg.fit (weight, age, edf=c(3,5,3),pvec=centiles)

> plot (lms.fit)

> points (age, weight, col="blue")

> print (lms.fit)

R command for Nonparametric Quantile Regression Model (NPQR)

> library (MASS)

> plot (age, weight, xlab = "age", ylab = "weigth (kg)")

> library (splines)

> plot (age, weight, xlab = "age", ylab = " weigth (kg)",

+ type = "n")

> points(age, weight, cex = 0.75)

> X <- model.matrix (kilo ~ bs(age, df = 5))

> library (quantreg)

> for (tau in c (0.03,0.05,0.10,0.25,0.5,0.75,0.9,0.95,0.97)) {

+ fit <- rq(weight ~ bs(age, df = 5), tau = tau)

+ weight.fit <- X %*% fit$coef

+ lines(age, weight.fit)

+ }

APPENDIX

N: Number; SD: Standard deviation.
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While there was a linear increase in L and M
values in Figure 3, S value seemed to increase until
the age 10-11 years followed by a decreasing trend
later. The blue spots in the graphic show 
real weight values and the discontinuous lines shows
the percentile curves that are estimated with LMS.

The percentile values that were estimated with
LMS method were given in Table 4. These values
were obtained after both transformation and
smoothing.

In Table 5, the estimated values of L, M, and S
parameters according to ages were shown. Per-
centile values were estimated by using these values.

RESULTS OF NONPARAMETRIC QUANTILE REGRESSION 

Percentile curves were reconstructed by using non-
parametric quantile regression on the same data be-

. Levene test for Homogenity of variance 

(df1=8, df2=1762)

Age Skewness±S.E. Kurtosis±S.E Test statistics P value

6 0,474 ± 0,230 0,151 ± 0,457 33,292 0,0001

7 0,792 ± 0,159 1,000 ± 0,318

8 1,022 ± 0,161 1,074 ± 0.320

9 0,729 ± 0,161 0,030 ± 0,321

10 0,728 ± 0,168 0,315 ± 0,334

11 0,697 ± 0,152 0,274 ± 0,303

12 0,478 ± 0,159 0,054 ± 0,317

13 0,413 ± 0,170 0,111 ± 0,338

14 0,637 ± 0,295 -0,194 ± 0,582

TABLE 3: Shape parameters of weight distribution and homogeneity test results.

FIGURE 1: Distribution of weight values of girls at each age. FIGURE 2: Raw percentile values in each group.

FIGURE 3: Predicted percentile curves according to the LMS method.

SE: Standard error.
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LMS 

Predicted Percentile Values

Age 3 5 10 25 50 75 90 95 97

6 17,627 18,080 18,823 20,202 21,979 24,077 26,320 27,861 28,958

7 18,999 19,539 20,428 22,099 24,285 26,920 29,797 31,813 33,266

8 20,468 21,102 22,152 24,141 26,774 29,994 33,567 36,105 37,952

9 22,562 23,319 24,577 26,964 30,137 34,030 38,360 41,440 43,682

10 25,209 26,124 27,640 30,510 34,301 38,908 43,965 47,517 50,077

11 28,309 29,409 31,225 34,631 39,067 44,350 50,012 53,901 56,659

12 31,923 33,225 35,360 39,318 44,371 50,245 56,367 60,470 63,332

13 35,369 36,854 39,271 43,687 49,209 55,467 61,813 65,971 68,827

14 38,694 40,341 42,999 47,790 53,662 60,168 66,612 70,755 73,567

TABLE 4: Smoothing percentile curves obtained from LMS.

cause there was deviation in tails of distribution
even if Box-Cox method was applied. The per-
centile values that were estimated by the NPQR
method were given in Table 6.

The percentile curves for the NPQR method
were illustrated in Figure 4. In the figure, sym-
metric percentile curves were shown with the
same color. The effect of covariate (age) occured
differently on different percentile curves in both
LMS and NPQR methods because the estimated
percentile curves were not exactly parallel to each
other.

The results of symmetric percentiles were
given in Tables 7-11, which involves NPQRL
model coefficients for each percentile values. ‘bs’ is

the base function and all the models constitute of 5
base functions. “B” is the regression coefficient of
the base function and in the next column standard

Age L M S (Coeff. Var.)

6 -0,903 21,978 0,130

7 -0,891 24,285 0,146

8 -0,852 26,774 0,160

9 -0,755 30,138 0,172

10 -0,602 34,302 0,180

11 -0,414 39,067 0,183

12 -0,226 44,372 0,182

13 -0,048 49,209 0,177

14 0,112 53,662 0,171

TABLE 5: L, M and S values at each age.

NPQR

Predicted Percentile Values

Age 3 5 10 25 50 75 90 95 97

6 17,60 18,40 18,80 20,40 22,00 24,00 25,40 27,60 28,60

7 18,85 19,21 20,00 22,00 24,40 26,80 29,80 32,50 33,25

8 20,80 21,20 22,00 24,00 26,99 29,80 34,27 37,08 39,20

9 23,13 23,68 24,40 26,50 30,20 33,65 39,20 42,07 44,80

10 25,60 26,20 27,03 29,72 34,34 38,80 44,84 48,00 50,75

11 28,40 29,20 30,60 34,00 39,34 44,91 50,94 54,53 57,00

12 31,80 33,13 35,62 39,40 44,80 51,20 57,00 61,00 63,20

13 36,00 37,60 40,80 44,28 49,40 55,85 62,00 66,70 67,91

14 41,20 42,00 44,40 46,60 51,60 56,80 64,80 68,80 69,40

TABLE 6: Smoothing percentile values obtained from NPQR model.

LMS: Least median of squares.

NPQR: Nonparametric quantile regression.
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error of that coefficient. Next column of the table
indicates standart error of B coefficient. t value
shows the hypothesis test of the B coefficient. The
intercept value is equal to the minimum weight
value in the percentile. Percentile value of a new
subject is estimated by using the intercept value
and the regression coefficients.

Table 12 includes the mean error of the mod-
els, and standard deviation of those errors with
minimum and maximum values. Errors were com-
puted by summing the squares of the differences
between the estimated values from the LMS and
NPQR models and their observed weight values.
This table revealed that the sum of error squares of
the NPQR estimates was lower than the LMS esti-
mates in all percentile values. Especially this dif-
ference was highest at a percentile value of 10%.
This result indicated that the estimations of NPQR
method were more successful (Table 12).

The studies that are conducted in İstanbul
constitute the basis of growth curves that are de-
veloped in Turkish children. Neyzi et al.17 de-
scribed the reference values for various percentile
values of girls aged between 12-14 years (Table 13).
These values were obtained via the LMS method.
When the reference values described by Neyzi et
al.17 were compared with the LMS estimations
(Table 4) and NPQR estimations (Table 6), similar
results were obtained.

FI GU RE 4: Pre dic ted per cen ti le cur ves for the non pa ra met ric qu an ti le reg -
res si on (NPQR) met hod.

Model coefficients for 3. percentile Model coefficients for 97. percentile

Model coefficients B Std. Error t value Pr(>|t|) B Std. Error t value Pr(>|t|)

(Intercept) 17.6 0.2653 66.33881 0 28.6 0.40026 71.45442 0

bs(age, df = 5)1 0.78279 0.76576 1.02224 0.30681 5.23904 2.05577 2.54846 0.0109

bs(age, df = 5)2 4.68415 1.16665 4.01504 0.00006 13.89144 3.04651 4.55979 0.00001

bs(age, df = 5)3 11.20669 1.7237 6.50151 0 30.30452 3.19347 9.48952 0

bs(age, df = 5)4 17.83722 2.68745 6.63724 0 41.48217 3.89841 10.64079 0

bs(age, df = 5)5 23.6 2.33766 10.09558 0 40.8 1.10715 36.85129 0

TABLE 7: NPQR model coefficients for 3th and 97th percentiles.

Model coefficients for 5. percentile Model coefficients for 95. percentile

Model coefficients B Std. Error t value Pr(>|t|) B Std. Error t value Pr(>|t|)

(Intercept) 18.4 0.46745 39.36284 0 27.6 1.17017 23.58634 0

bs(age, df = 5)1 0.0028 0.98809 0.00283 0.99774 5.30435 2.48221 2.13695 0.03274

bs(age, df = 5)2 4.62928 0.90399 5.12095 0 11.51232 2.44075 4.71672 0

bs(age, df = 5)3 10.81077 1.27702 8.46561 0 29.08565 3.3393 8.7101 0

bs(age, df = 5)4 19.4362 1.75624 11.06693 0 40.34435 2.8138 14.33805 0

bs(age, df = 5)5 23.6 1.16034 20.33878 0 41.2 2.04663 20.13061 0

TABLE 8: NPQR model coefficients for 5th and 95th percentiles.

B: Regression coefficient of the base function; NPQR: Nonparametric quantile regression; Pr(>|t|): Actual p value.

B: Regression coefficient of the base function; bs: Base function; df: Difference; NPQR: Nonparametric quantile regression; Pr(>|t|): Actual p value.
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Model coefficients for 25. percentile Model coefficients for 75. percentile

Model coefficients B Std. Error t value Pr(>|t|) B Std. Error t value Pr(>|t|)

(Intercept) 20.4 0.22347 91.28936 0 24 0.37096 64.69689 0

bs(age, df = 5)1 1.43838 0.64853 2.21791 0.02669 2.91646 0.93504 3.11907 0.00184

bs(age, df = 5)2 4.54785 0.93105 4.88462 0 6.65378 1.26115 5.27598 0

bs(age, df = 5)3 13.72472 1.0978 12.50207 0 22.62521 1.8715 12.08937 0

bs(age, df = 5)4 25.85018 1.10155 23.4672 0 34.38789 2.06874 16.62264 0

bs(age, df = 5)5 26.2 0.70188 37.32829 0 32.8 2.06976 15.84727 0

TABLE 10: NPQR model coefficients for 25th and 75th percentiles.

The relationship between the reference val-
ues17 and the estimated values obtained in the pres-
ent study was given in Table 14 collectively. Table
14 revealed that there was a significant and very
strong relationship between reference values 17 and
the estimation values obtained by the LMS and
NPQR methods in the present study. 

DISCUSSION 

Many studies have defined human growth in the
medical research literature.6,8,17-21 Observing
growth stages is a very important process for un-
derstanding whether the development of children
is healthy or not. Assessment of children’s growth
is monitored by using percentile curves that are
developed for weight, height and head circumfer-
ence measurements according to the age and gen-
der. 

In this study, percentile curves were con-
structed using weight data of healthy girls by using
the LMS and NPQR methods where the distribu-
tion of weight values was skewed and the variance

of the weights varied according to age. Some re-
searchers have emphasized that the quantile re-
gression model gives better results in such
circumstances.22 The results of the Monte Carlo
simulation study showed that non-parametric
quantile regression methods might provide better
and more robust estimation results especially when
the underlying model was non-linear and/or the
error term followed a non-normal distribution
compared to their parametric counterparts.23

Model coefficients for 50. percentile

Model coefficients B Std. Error t value Pr(>|t|)

(Intercept) 22 0.35468 62.02722 0

bs(age, df = 5)1 2.4435 0.86432 2.82707 0.00475

bs(age, df = 5)2 5.94821 0.9659 6.15819 0

bs(age, df = 5)3 18.4484 1.22 15.12163 0

bs(age, df = 5)4 29.11412 1.42472 20.43498 0

bs(age, df = 5)5 29.6 1.17999 25.08489 0

TABLE 11: NPQR model coefficients for 50th percentile.

B: Regression coefficient of the base function; bs: Base function; df: Difference; NPQR: Nonparametric quantile regression; Pr(>|t|): Actual p value.

B: Regression coefficient of the base function; bs: Base function; df: Difference; 
NPQR: Nonparametric quantile regression; Pr(>|t|): Actual p value.

Model coefficients for 10. percentile Model coefficients for 90. percentile

Model coefficients B Std. Error t value Pr(>|t|) B Std. Error t value Pr(>|t|)

(Intercept) 18.8 0.491 38.2889 0 25.4 0.70229 36.16737 0

bs(age, df=5)1 0.66805 0.98684 0.67695 0.49852 4.49177 2.35082 1.91072 0.0562

bs(age, df=5)2 4.77571 0.81647 5.84919 0 11.1996 2.51131 4.45967 0.00001

bs(age, df=5)3 11.36023 1.20989 9.3895 0 27.52696 2.2648 12.15425 0

bs(age, df=5)4 23.36828 1.73096 13.50019 0 38.08063 2.59948 14.64933 0

bs(age, df=5)5 25.6 1.36196 18.79646 0 39.4 2.58122 15.26411 0

TABLE 9: NPQR model coefficients for 10th and 90th percentiles.

B: Regression coefficient of the base function; bs: Base function; df: Difference; NPQR: Nonparametric quantile regression; Pr(>|t|): Actual p value.
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LMS method is used mostly for construction of
percentile curves. However, this method was sug-
gested to give good results when assumptions like the
homogenity of the variances and normal distribution
were met.6,8 In addition, the NPQR method is more
flexible than the LMS about taking different covari-
ates to the model and it is more suitable when the
parametric model assumptions are not valid.16

Our results suggest that the sum of error
squares of the NPQR estimates was lower than
LMS estimates in all percentile values. Especially
this difference was highest at a percentile value of

Percentile N Mean Error Std. Dev. Sum of error square Minimum Maximum

3 9 -0.325 0.734 5.264 -1.881 0.733

5 9 -0.177 0.704 4.246 -1.645 0.809

10 9 -0.067 0.794 5.082 -1.282 1.085

25 9 -0.052 0.593 2.84 -1.032 1.031

50 9 -0.131 0.518 2.298 -1.129 0.667

75 9 -0.021 0.753 4.534 -1.805 0.674

90 9 -0.411 1.08 10.843 -2.333 1.282

95 9 -0.212 1.015 8.648 -1.395 1.645

97 9 -0.28 1.284 13.891 -2.268 1.881

3 9 -0,074 0,586 2,793 -1,364 0,820

5 9 -0,098 0,567 2,661 -1,080 0,670

10 9 -0,057 0,322 0,858 -0,460 0,380

25 9 0,133 0,436 1,679 -0,400 0,950

50 9 -0,008 0,498 1,987 -0,940 0,700

75 9 0,066 0,645 3,370 -0,760 0,850

90 9 0,334 0,713 5,069 -0,540 1,700

95 9 -0,051 0,746 4,476 -1,520 0,650

97 9 0,337 0,785 5,949 -1,322 1,518

TABLE 12: Goodness of fit results of LMS ve NPQR methods.
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Girls’ weight percentiles (reference values)/İstanbul

Age 3% 10% 25% 50% 75% 90% 97%

6 15,7 17,0 18,6 20,6 22,9 25,3 27,9

7 17,2 18,7 20,6 22,9 25,7 28,6 31,9

8 18,9 20,8 22,9 25,7 28,9 32,4 36,5

9 20,9 23,1 25,6 28,9 32,8 37,0 41,8

10 23,0 25,6 28,7 32,6 37,3 42,3 48,0

11 26,4 29,6 33,4 38,2 43,7 49,5 55,9

12 32,0 35,8 39,9 45,1 50,9 56,8 63,1

13 37,4 41,4 45,1 50,0 55,5 60,8 66,6

14 41,6 45,0 48,8 53,3 58,3 63,2 68,5

TABLE 13: Weight values of Turkish girls estimated
from Istanbul reference values (Neyzi et al 2008).

The relation between LMS predicted values in The relation between NPQR predicted values in 

this study and reference values in Table 13 this study and reference values in Table 13

Percentiles r R-sqr (%) p r R-sqr (%) p

3th 0.995 99.0 <0.0001 0.996 99.1 <0.0001

10th 0.997 99.4 <0.0001 0.999 99.9 <0.0001

25th 0.999 99.7 <0.0001 0.999 99.9 <0.0001

50th 0.999 99.8 <0.0001 0.999 99.8 <0.0001

75th 0.998 99.5 <0.0001 0.999 99.7 <0.0001

97th 0.997 99.4 <0.0001 0.998 99.6 <0.0001

TABLE 14: The relationships between estimates and reference values.

LMS: Least median of squares; NPQR: Nonparametric quantile regression.

N: Number; LMS: Least median of squares;  NPQR: Nonparametric quantile regression.
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10%, which led to the conclusion that the NPQR
method was less affected by outliers. In addition,

the reference values   in the Istanbul study and esti-
mates of our models were highly correlated.17

1. Gonzalez X, Miles D. Wage inequality in a de-
veloping country: decrease in minimum wage or
increase in education returns. In: Fitzenberger
B, Koenker R, Machado JAF, eds. Economic
Applications of Quantile Regression. 1st ed. Hei-
delberg: Physica-Verlag; 2002. p.135-45.

2. Koenker R. Quantile treatment effects. In:
Chester A, Jackson M, eds. Quantile Regres-
sion. 1st ed. Cambridge: Cambridge University
Press; 2005. p.26-42.

3. Yu K, Lu Z, Stander J. Quantile regression:
applications and current research areas. The
Statistician 2003;52(3):331-50.

4. Koenker R, Hallock K. Quantile regression: an
introduction. Journal of Economic Perspec-
tives 2001;15(4):143-56.

5. Cole TJ, Cortina-Borja M, Sandhu J, Kelly FP,
Pan H. Nonlinear growth generates age
changes in the moments of the frequency dis-
tribution: the example of height in puberty. Bio-
statistics 2008;9(1):159-71.

6. Cole TJ, Green PJ. Smoothing reference cen-
tile curves: the LMS method and penalized
likelihood. Stat Med 1992;11(10):1305-19.

7. Chen L. An introduction to quantile regression
and the QUANTREG Procedure. Statistics
and Data analysis 2005; 213–230. SUGI30
Proceedings, available at children and ado-
lescents. Conference on Quantitative Social
Science Research Using R. available at
http://www.cis.fordham.edu/QR2009/presen-
tations/RefGrowthCharts.pdf 

8. Wei Y, Pere A, Koenker R, He X. Quantile re-
gression methods for reference growth charts.
Stat Med 2006;25(8):1369-82.

9. Chuchana P, Marchand D, Nugoli M, Ro-
driguez C, Molinari N, Garcia-Sanz JA. An
adaptation of the LMS method to determine
expression variations in profiling data. Nucleic
Acids Res 2007;35(9):e71.

10. Koenker R, Basset G. Regression quantiles.
Econometrica 1978;46(1):33-50.

11. Koenker R, Ng P, Portnoy S. Quantile smooth-
ing splines. Biometrika 1994;81(4): 673-80.

12. Yu K, Jones MC. Local linear quantile regres-
sion. The Journal of the American Statistical
Association 1998;93(441):228-37.

13. Bosch RJ, Ye Y, Woodworth GG. A conver-
gent algorithm for quantile regression with
smoothing splines. Comput Stat Data Anal
1995;19(6):613-30.

14. Thompsona P, Caia Y, Moyeeda R, Reeveb
D, Standera J. Bayesian nonparametric quan-
tile regression using splines. Commput Stat
Data Anal 2010;54(4):1138-50.

15. He X. Quantile curves without crossing. The
American Statistician 1997;51(2):186-92.

16. Takeuchi I, Le QV, Sears T, Smola AJ. Non-
parametric quantile regression. Journal of Ma-
chine Learning Research 2006;7(7):1231-64.

17. Neyzi O, Günöz H, Furman A, Bundak R,
Gökçay G, Darendeliler F, et al. [Body weight,
height length, head circumference and body

mass index reference values for Turkish chil-
dren]. Turkish Pediatric Journal 2008;51(1):1-
14.

18. Royston P. A parametric model for ordinal re-
sponse data, with application to estimating
age-specific reference intervals. Biostatistics
2000;1(3):263-77.

19. Gasser T, Ziegler P, Seifert B, Prader A, Moli-
nari L, Largo R. Measures of body mass and
of obesity from infancy to adulthood and their
appropriate transformation. Ann Hum Biol
1994;21(2):111-25.

20. Royston P, Wright EM. A method for estimat-
ing age-specific reference interval (‘normal
ranges’) based on fractional polynomials and
exponential transformation. Journal of the
Royal Statistical Society, Series A, General
1998;161(1):79-101.

21. Heagerty P, Pepe MS. Semi-parametric esti-
mation of regression quantiles with application
to standardizing weight for height and age in
US children. Applied Statistics 1999;48(4):
533-51.

22. Landajo M, Andrés J, Lorca P. Measuring firm
performance by using linear and non-para-
metric quantile regressions. Applied Statistics
2008;57(2):227-50.

23. Min I, Kim I. A Monte Carlo comparison of
parametric and non-parametric quantile re-
gressions. Applied Economic Letters 2004;
11(2):71-4.

REFERENCES


